K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

Ta có :

\(N=\frac{2018+2019+2020}{2019+2020+2021}\)

\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)

Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Leftrightarrow M>N\)

28 tháng 7 2020

Trả lời:

Ta có: 

\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)

\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)

\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)

\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)

hay \(M>N\)

Vậy \(M>N\)

21 tháng 3 2020

N =2019+2020/2020+2021

=2019/2020+2021  +   2020/2020+2021

Ta có:

2019/2020>2019/2020+2021

2020/2021 > 2020/2020+2021

=>M>N

8 tháng 2 2021

1) Ta có: \(\frac{2019}{2020}+\frac{2020}{2021}=\frac{2019}{2020}+\frac{4040}{4042}>\frac{4040}{4042}>\frac{4039}{4041}\)

Mà \(\frac{2019+2020}{2020+2021}=\frac{4039}{4041}\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019+2020}{2020+2021}\)

2) BĐT cần CM tương đương:

\(\frac{a^2+b^2}{ab}\ge2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (Luôn đúng)

Dấu "=" xảy ra khi: a = b

Hoặc có thể sử dụng BĐT Cauchy nếu bạn học cao hơn

8 tháng 2 2021

Tìm x e Z biết: 2x+1 e Ư (x+5) và x e N

giải giúp mình nhé!

mình cần gấpppppppppppppp

23 tháng 3 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2019}+1}\)

=> \(\frac{A}{10}=\frac{10^{2020}+1}{10^{2020}+10}=\frac{10^{2020}+10-9}{10^{2020}+10}=1-\frac{9}{10^{2020}+10}\)

Lại có : B = \(\frac{10^{2021}+1}{10^{2020}+1}\)

=> \(\frac{B}{10}=\frac{10^{2021}+1}{10^{2021}+10}=\frac{10^{2021}+10-9}{10^{2021}+10}=1-\frac{9}{10^{2021}+10}\)

Vì : \(\frac{9}{10^{2021}+10}< \frac{9}{10^{2020}+10}\Rightarrow1-\frac{9}{10^{2021}+10}>1-\frac{9}{10^{2020}+10}\Rightarrow\frac{B}{10}>\frac{A}{10}\Rightarrow B>A\) 

Vậy B > A

24 tháng 5 2020

Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)

=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)

=> A > B.

29 tháng 6 2020

Ta thấy \(B=\frac{10^{2020}+1}{10^{2020}+1}=1\)

            \(A=\frac{10^{2018}+1}{10^{2019}+1}< 1\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

Bạn có chắc là đề đúng không?

29 tháng 6 2020

                             Bài giải

A < 1 ; B = 1 => A < B

Nếu đề bạn sai thì vào câu hỏi tương tự là có !

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)và \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

Xét \(A=\frac{2019^{2020}+1}{2019^{2021}+1}\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2019}{2019^{2021}+1}\)

Xét \(B=\frac{2019^{2018}+1}{2019^{2019}+1}\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}=1+\frac{2018}{2019^{2019}+1}\)

Vì \(1+\frac{2018}{2019^{2021}+1}< 1+\frac{2018}{2019^{2019}+1}\Rightarrow\frac{2019^{2020}+1}{2019^{2021}+1}< \frac{2018^{2019}+1}{2019^{2019}+1}\)

\(\Rightarrow A< B\)

Ta có:

\(A=\frac{2019^{2020}+1}{2019^{2021}+1}\)

\(\Rightarrow2019A=\frac{2019^{2021}+2019}{2019^{2021}+1}\)

\(\Rightarrow2019A=1+\frac{2019}{2019^{2021}+1}\)

\(\Rightarrow A=1+\frac{2019}{2019^{2021}+1}:2019\)

Ta lại có:

\(B=\frac{2019^{2018}+1}{2019^{2019}+1}\)

\(\Rightarrow2019B=\frac{2019^{2019}+2019}{2019^{2019}+1}\)

\(\Rightarrow2019B=1+\frac{2019}{2019^{2019}+1}\)

\(\Rightarrow B=1+\frac{2019}{2019^{2019}+1}:2019\)

Do \(2019^{2021}+1>2019^{2019}+1\)

\(\Rightarrow\frac{2019}{2019^{2021}+1}< \frac{2019}{2019^{2019}+1}\)

\(\Rightarrow1+\frac{2019}{2019^{2021}+1}:2019< 1+\frac{2019}{2019^{2019}+1}:2019\)

\(\Rightarrow A< B\)

Vậy \(A< B.\)

16 tháng 8 2020

a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)

=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)

Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)

=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)

Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020