K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2018

s1=1+2+3+...+99

s1=99+98+...+1

2s1=100+100+....+100

2s1=100.99

s1=100.99:2=4950(mấy bài sau lam tương tự nha)

25 tháng 11 2018

4+4^2+4^3+...+4^90 chia hết cho 21

=(4+4^2+4^3)+...+(4^88+4^89+4^90)

=84.1+(4^4+4^5+4^6+...+4^90)

vì 84 chia hết cho 21 suy ra tổng trên chia hét cho 21         (ĐPCM)

28 tháng 5 2016

a,s1=499500                                                         b,s2=1011010                                                               c,s3=250901

d,s4=7725                                                            e,s5=6035                                                                     f,s6=715

24 tháng 11 2018

Bài 1: Tìm X

a, 32.(x+4)-52=5.22

32 .(x+4)-25 =20

⇒9 . (x+4) = 20+25=45

⇒ x+4 = 45: 9 = 5

⇒ x = 5-4 = 1

Vậy x = 1

b,5x+x=39-311:39

⇒ 6x = 39 - 32 =39-9=30

⇒ x = 30 : 6 = 5

Vậy x = 5

c(3x -24 ).73 =2.74

⇒ 3x -24 = 2 . 74 : 73

⇒ 3x - 16 = 2 . 7 = 14

⇒ 3x = 14+16=30

Mà 33=27 , 34 = 81

⇒ x = ∅

24 tháng 11 2018

Bài 2

a, 66.25+5.66+66.14+33.66

= 66 . ( 25+5+14+33 )

= 66 . 77 = 5082

6 tháng 7 2018

a, 18^3 : 9^3 = 5832 : 729 = 8

6 tháng 7 2018

a) 18 9 = ( 18 : 9 ) 3 = 23 = 8

b) 1253 : 253 = 53 = 125

12 tháng 12 2014

A=1+3+32+33+...+320

A=(1+3)+(32+33)+(34+35)+...+(319+320)

A= 4+32(1+3)+34(1+3)+......+319(1+3)

A=4+32.4+34.4+....+319.4

A=4.(32+34+...+319) =>A chia hết cho 4

 

 

 

 

 

 

 

 

0+(

a: \(S=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}=-\dfrac{1}{100}\)

c: \(5S_3=5^6+5^7+...+5^{101}\)

\(\Leftrightarrow4\cdot S_3=5^{101}-5^5\)

hay \(S_3=\dfrac{5^{101}-5^5}{4}\)

d: \(S_4=7\cdot\left(\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{69}-\dfrac{1}{70}\right)\)

\(=7\left(\dfrac{1}{10}-\dfrac{1}{70}\right)=7\cdot\dfrac{6}{70}=\dfrac{6}{10}=\dfrac{3}{5}\)

 

27 tháng 2 2016

Bài 2 : a) Ta có :

\(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2014}+3^{2015}\right)\)

=> \(S=4+3^2\left(1+3\right)+...+3^{2014}\left(1+3\right)\)

=> \(S=4+3^2.4+3^4.4+...+3^{2014}.4\)

=> \(S=4\left(3^2+3^4+...+3^{2014}\right)\)

Vì 4 chia hết cho 4 => S chia hết cho 4

b) \(S=1+3+3^2+3^3+...+3^{2014}+3^{2015}\)

=> \(S=\left(1+3+3^2+3^3\right)+...+\left(3^{2012}+3^{2013}+3^{2014}+3^{2015}\right)\)

=> \(S=40+3^4.40+3^8.40+...+3^{2012}.40\)

=> \(S=40\left(1+3^4+3^8+...+3^{2012}\right)\)

Vì 40 chia hết cho 10 => S chia hết cho 10 => S có tận cùng là 0

27 tháng 2 2016

S = 1 + 3 + 32 + 33 + ..... + 32014 + 32015

=> 3S = 3 + 32 + 33 + 34 + .... + 32015 + 32016

=> 3S - S = 32016 - 1

=> S = ( 32016 - 1 ) : 2

Ta có 32016 = ( 34 )504 = 81504 = .......1

=> S = ( ......1 - 1 ) : 2 = ......0 : 2 = ......5

Vậy chữ số tận cùng của S là 5