K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2022

Bài 1:

a: Xét tứ giác ABEF có

BE//AF

BE=AF

BE=BA

Do đó: ABEF là hình thoi

b: Xét ΔBIE có BI=BE

nên ΔBIE cân tại B

mà góc IBE=60 độ

nên ΔBIE đều

=>góc I=60 độ

Xét tứ giác AFEI có

EF//AI

góc I=góc A

Do đó AFEI là hình thang cân

c: Xét ΔBAD có

BF là đường trung tuyến

BF=AD/2

Do đó: ΔBAD vuông tại B

=>DB vuông góc với BI

Xét tứ giác BICD có

BI//CD

BI=CD

Do đó: BICD là hình bình hành

mà DB vuông góc với BI

nên BICD là hình chữ nhật

d: Xét ΔAED có

EF la trung tuyến

FE=DA/2

Do đó: ΔAED vuông tại E

=>góc AED=90 độ

11 tháng 11 2018

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE,  MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)

11 tháng 11 2018

1)      a.   xét trong tam giác ABC có

           I trung điểm AB và K trung điểm AC  =>IK là đường trung bình của tam giác ABC=>IK song song với BC

            vậy BCKI là hình thang (vì có hai cạng đáy song song)

          b.

            IK  // và =1/2BC   (cm ở câu a)   =>IK song  song NM

            M trung điểm HC  và N trung điểm HB  mà HB+HC=CB =>MN=IK=1/2BC

            suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

Câu 2: 6x2 + 7x - 3

= 6x2 + 9x - 2x - 3

= 3x(2x +3) - (2x + 3)

= (3x - 1)(2x + 3)

Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)a) Chứng minh: Tứ giác ADME là hình chữ nhật.b) Gọi F là điểm đối xưng của điểm M qua điểm E.Chứng minh: tứ giác AMCF là hình thoi.c) Gọi I, K lần lượt là trung điểm của BM và MC.CMR: DI + EK = AMd) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MNBài 2:...
Đọc tiếp

Câu 1: (3,5 điểm). Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC, từ M kẻ MD ⊥ AB tại D và ME ⊥ AC tại E (D ∈ AB, E ∈ AC)

a) Chứng minh: Tứ giác ADME là hình chữ nhật.

b) Gọi F là điểm đối xưng của điểm M qua điểm E.

Chứng minh: tứ giác AMCF là hình thoi.

c) Gọi I, K lần lượt là trung điểm của BM và MC.

CMR: DI + EK = AM

d) Gọi N là giao điểm của AM và BE. Chứng minh: AF = 3MN

Bài 2: (3,5 điểm) Cho ∆ABC nhọn. Gọi M là trung điểm của AB. Đường thẳng qua M và song song với BC cắt AC tại N, đường thẳng qua B và song song với AC cắt đường thẳng MN tại D.

a/ Chứng minh tứ giác BCND là hình bình hành

b/ Vẽ đường cao AH của ∆ABC. Lấy điểm K sao cho N là trung điểm của HK.

CMR: tứ giác AHCK là hình chữ nhật.

c/ Chứng minh tức giác BHND là hình thang cân.

d/ Đường thẳng qua N và song song với HM cắt đường thẳng DK tại E. Chứng minh DE = 2EK

 

 

 

                                                         

 

 

 

1
7 tháng 7 2016

Câu c: Ta sẽ cm góc BDN = góc HND ( vì cùng bằng góc AND)

Thật vậy:  BDN  = AND slt

                    HND = AND (dễ cm tam giác ANH cân tại N, AH dễ cm là đường cao, nên đồng thời là phân giác)

 Þtứ giác BHND là hình thang cân

Câu d: Gọi I là giao điểm của HM và DK

Xét tứ giác ADBN có

BD = AN  (=HN vì BHND là hình thang cânÞ BD = HN, AHCK là hcn ÞAN = HN)

suy ra  Tứ giác ADBN là hbh ÞM là trung điểm của DN suy ra MD = MN

Xét tam giác EDN có MI song song EN, MD = MN (cmt)suy ra  MI là đường trung bình hay ID = IE (1)

Tương tự xét tam giác KIH có NE là đường trung bình hay EK = IE (2)

Từ (1) và (2) suy ra  ID = IE = EK. Vậy DE = 2EK