Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D_1\) : \([\frac{-m+1}{2};+\infty)\)
\(D_2\) : \((-\infty;3]\)
\(D_1\cup D_2=R\Leftrightarrow\frac{-m+1}{2}\le3\)
\(\Leftrightarrow m\ge-5\)
Bài 2:
Đường tròn \(\left(C_1\right)\) tâm \(\left(1;2\right)\) bán kính \(R=2\)
a/ Không hiểu đề bài, bạn ghi rõ thêm ra được chứ?
Tiếp tuyến đi qua giao điểm của \(\Delta_1;\Delta_2\) hay tiếp tuyến tại các giao điểm của \(\Delta_1\) và \(\Delta_2\) với đường tròn?
b/ Lại không hiểu đề nữa, điểm I trong tam giác \(IAB\) đó là điểm nào vậy bạn?
Bài 1b/
\(\Delta'\) nhận \(\left(2;1\right)\) là 1 vtpt
Gọi vtpt của d' có dạng \(\left(a;b\right)\Rightarrow\frac{\left|2a+b\right|}{\sqrt{2^2+1^2}.\sqrt{a^2+b^2}}=\frac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|2a+b\right|=\sqrt{5\left(a^2+b^2\right)}\Leftrightarrow2\left(2a+b\right)^2=5\left(a^2+b^2\right)\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Rightarrow\left[{}\begin{matrix}a=-3b\\3a=b\end{matrix}\right.\)
\(\Rightarrow\) d' có 2 vtpt thỏa mãn là \(\left(3;-1\right)\) và \(\left(1;3\right)\)
TH1: d' có pt dạng \(3x-y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|3.1-3+c\right|}{\sqrt{3^2+1^2}}=2\Rightarrow c=\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\)
\(d\left(I;d'\right)=R\Leftrightarrow\frac{\left|1+3.3+c\right|}{\sqrt{10}}=2\Leftrightarrow\left|c+10\right|=2\sqrt{10}\Rightarrow c=-10\pm2\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}x+3y-10+2\sqrt{10}=0\\x+3y-10-2\sqrt{10}=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}9-3\left|x\right|\ge0\\9x^2-1>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-3\le x\le3\\\left[{}\begin{matrix}x>\frac{1}{3}\\x< -\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\frac{1}{3}< x\le\frac{1}{3}\\-3\le x< -\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow D_1=[-3;-\frac{1}{3})\cup(\frac{1}{3};3]\)
\(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne-2\end{matrix}\right.\) \(\Rightarrow x>-2\)
\(\Rightarrow D_2=\left(-2;+\infty\right)\)
\(\Rightarrow A=\left\{-1;1;2;3\right\}\)
Lời giải:
PT hoành độ giao điểm của 2 ĐTHS:
\(x^2-4x+3=mx+3\)
\(\Leftrightarrow x^2-(m+4)x=0\)
\(\Leftrightarrow x(x-m-4)=0(*)\)
Để 2 ĐTHS cắt nhau tại 2 điểm phân biệt $A,B$ thì pt phải có 2 nghiệm phân biệt
\(\Leftrightarrow m\neq -4\). Khi đó, PT có 2 nghiệm phân biệt \(\left\{\begin{matrix} x_A=0\\ x_B=m+4\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} y_A=mx_A+3=3\\ y_B=mx_B+3=m^2+4m+3\end{matrix}\right.\)
\(\Rightarrow AB=\sqrt{(x_A-x_B)^2+(y_A-y_B)^2}=\sqrt{(m^2+1)(m+4)^2}\)
\(d(O,AB)=d(O,(d):y= mx+3)=\frac{|m.0-0+3|}{\sqrt{m^2+1}}=\frac{3}{\sqrt{m^2+1}}\)
Như vậy:
\(S_{OAB}=\frac{d(O,AB).AB}{2}=\frac{9}{2}\)
\(\Leftrightarrow \frac{3}{\sqrt{m^2+1}}.\sqrt{(m^2+1)(m+4)^2}=9\)
\(\Leftrightarrow |m+4|=3\Rightarrow m=-1\) hoặc $m=-7$
Giả sử \(C\left(c;-c;-3\right)\in d_1\)
\(D\left(5d+16;d\right)\in d_2\)
\(\Rightarrow\overrightarrow{CD}=\left(5d+16-c;d+c+3\right)\)
ABCD là hình bình hành \(\Rightarrow\overrightarrow{CD}=\overrightarrow{BA}=\left(3;4\right)\)
\(\Rightarrow\begin{cases}5d+16-c=3\\d+c+3=4\end{cases}\)\(\Leftrightarrow\begin{cases}5d-c=-13\\d+c=1\end{cases}\)
\(\Leftrightarrow\begin{cases}d=-2\\c=3\end{cases}\)
\(\Rightarrow C\left(3;-6\right);D\left(6;-2\right)\)
Ta có : \(\overrightarrow{BA}=\left(3;4\right);\overrightarrow{BC}=\left(4;-3\right)\) không cùng phương => A, B, C, D không thẳng hàng => ABCD là hình bình hàng
Vậy \(C\left(3;-6\right);D\left(6;-2\right)\)
\(d_1\) nhận \(\left(m;1\right)\) là 1 vtpt
\(d_2\) nhận \(\left(1;2\right)\) là 1 vtpt
Ta có: \(cos45^0=\dfrac{\left|m.1+1.2\right|}{\sqrt{m^2+1}.\sqrt{1+2^2}}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sqrt{2}\left|m+2\right|=\sqrt{5\left(m^2+1\right)}\)
\(\Leftrightarrow2\left(m+2\right)^2=5\left(m^2+1\right)\)
\(\Leftrightarrow3m^2-8m-3=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\dfrac{1}{3}\end{matrix}\right.\)