\(\left(P\right):y=x^2\)và đường thẳng (...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm là:

\(x^2-3x-m^2+1=0\)

\(a=1;b=-3;c=-m^2+1\)

\(\text{Δ}=9-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9+4m^2-4=4m^2+5>0\)

Do đó: (P) luôn cắt (d) tại hai điểm phân biệt

16 tháng 5 2022

Nguyễn Lê Phước Thịnh                                                         , mk cần bạn làm cái tìm m cơ!!!

4 tháng 4 2021

Xét pt tọa độ giao điểm:

X²=(m+4)x-2m-5

<=> -x²+(m+4)x-2m-5

a=-1.   b= m+4.  c=2m-5

Để pt có 2 No pb =>∆>0

=> (m+4)²-4×(-1)×2m-5>0

=> m² +2×m×4+16 +8m-20>0

=> m²+9m -2>0

=> x<-9 và x>0

 

 

Phương trình hoành độ của (d) với (P) là :

\(x^2=2x-n+3\)

\(\Leftrightarrow x^2-2x+n-3=0\)

Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=n-3\end{matrix}\right.\)

Theo đề bài : \(x_1^2-2x_2+x_1x_2=16\)

\(\Leftrightarrow x_1\left(x_1+x_2\right)-2x_2=16\)

\(\Leftrightarrow2x_1-2x_2=16\)

\(\Leftrightarrow x_1-x_2=8\)

Ta có hệ phương trình :

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1-x_2=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=3\end{matrix}\right.\)

\(\Rightarrow n-3=15\Leftrightarrow n=18\)

Vậy \(n=18\)

26 tháng 4 2020

Mình nghĩ nên sửa đề y=2(m-1)x-m2+6 và parobol (P)y=x2

a) Với m=3 ta được (d): y=4x-3

Hoành độ giao điểm của đường thẳng (d) và parabol (P0 là nghiệm của phương trình \(x^2=4x-3\)

<=> x2-4x+3=0

<=> x2-3x-x+3=0

<=> x(x-3)-(x-3)=0

<=> (x-3)(x-1)=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=3\Rightarrow y=9\end{cases}}}\)

Vậy giao điểm của (d) và (P) là A(1;1); B(3;9)

b) Phương trình hoành độ của (d) cắt (P) là nghiệm của phương trình x2-2(m-1)x-m2+6

<=> x2-2(m-1)x+m2-6=0 (1)

<=> (m-1)2-(m2-6)=7-2m

Đường thẳng (d) cắt (P) tại 2 điểm phân biệt khi và chỉ khi phương trình (1) có 1 nghiệm phân biệt

<=> 7-2m>0

<=> \(m< \frac{7}{2}\)(*)

Gọi x1;x2 là nghiệm của phương trình (1)

Khi đó thoe định lý Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1\cdot x_2+m^2=6\end{cases}}\)

Theo bài ra ta có: \(x_1^2+x_2^2=6\Leftrightarrow x_1+x_2^2+2x_1x_2=16\)

\(4\left(m^2-1\right)-2\left(m^2-6\right)=16\)

<=>2m2-8m=0

<=> m=0 hoặc m=4

m=0 (tmđk (*))

m=4 (ktmđk (*))

Vậy m=0 là giá trị cần tìm

6 tháng 7 2020

b) Hoành độ giao điểm của parabol (P) và đường thẳng d là nghiệm của phương trình:

\(x^2=2\left(m+3\right)x-2m-5\Leftrightarrow x^2-2\left(m+3\right)x+2m+5=0\) (1)

\(\Delta'=\left(m+3\right)^2-\left(2m+5\right)=m^2+6m+9-2m-5=m^2+4m+4=\left(m+2\right)^2\)

Phương trình (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'>0\)

\(\Delta'=\left(m+2\right)^2\ge0,\forall m\)

\(\Leftrightarrow\) \(\left(m+2\right)^2\ne0\Leftrightarrow m\ne-2\)

=> (P) cắt (d) tại 2 điểm phân biệt khi \(m\ne-2\)

Theo định lí Vi-ét: \(\left\{{}\begin{matrix}S=x_1+x_2=2\left(m+3\right)=2m+6\\P=x_1x_2=2m+5\end{matrix}\right.\)

\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\)

\(\Leftrightarrow\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}=\frac{4}{3}\)

\(\Rightarrow\left(\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}\right)^2=\frac{16}{9}\)

\(\Leftrightarrow\frac{x_2+2\sqrt{x_1x_2}+x_1}{x_1x_2}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6+2\sqrt{2m+5}}{2m+5}=\frac{16}{9}\)

\(\Leftrightarrow32m+80=18m+54+18\sqrt{2m+5}\)

\(\Leftrightarrow18\sqrt{2m+5}=14m+26\)

\(\Leftrightarrow\sqrt{2m+5}=\frac{7}{9}m+\frac{13}{9}\) (2)

ĐK: \(\left\{{}\begin{matrix}\frac{7}{9}m+\frac{13}{9}\ge0\\m\ne-2\end{matrix}\right.\Leftrightarrow m\ge-\frac{13}{7}\)

Bình phương 2 vế của phương trình (2):

\(2m+5=\frac{49}{81}m^2+\frac{182}{81}m+\frac{169}{81}\)

\(\Leftrightarrow\frac{49}{81}m^2+\frac{20}{81}m-\frac{236}{81}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(TM\right)\\m=-\frac{118}{49}\left(l\right)\end{matrix}\right.\)

Vậy m = 2 thỏa mãn đề bài

May mà nghiệm đẹp, phương trình xấu quá nên còn tưởng làm sai ;w;