Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hết không nổi =.= đành giải vài bài thôi :v . Lần sau bạn nên đăng từ từ để người giải bớt ngán nhé!
Bài 1
a) \(2\left(x+5\right)=x^2+5x\)
\(\Leftrightarrow2x+10=x^2+5x\)
\(\Leftrightarrow x^2+5x-2x=10\)
\(\Leftrightarrow x^2+3x=10\Leftrightarrow x\left(x+3\right)=10\Leftrightarrow\hept{\begin{cases}x=-5\\x=2\end{cases}}\) (ở đây lười kẻ bảng quá =((( )
b) \(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow x^2-2x+x=2\Leftrightarrow x^2-x=2\)
\(\Leftrightarrow x\left(x-1\right)=2\Leftrightarrow\hept{\begin{cases}x=-1\\x=2\end{cases}}\) (bạn kẻ bảng ra các ước của 2 là thấy)
:v lời giải bài 1 đang chờ duyệt. Mình giải tiếp bài 2
Bài 2
a) \(2x\left(x^2-3\right)=2x^3-6x\)
b) \(x\left(x^2-2x+5\right)=x^3-2x^2+5x\)
c) \(\left(x+2y\right)\left(x+2y^2-5xy\right)\)
\(=x\left(x+2y^2-5xy\right)+2y\left(x+2y^2-5xy\right)\)
\(=x^2+2xy^2-5x^2y+2xy+4y^3-10xy^2\)
\(=4y^3+x^2-8xy^2-5x^2y+2xy\)
d)Tương tự bài c)
a)(ab−1)2+(a+b)2
=a2b2−2ab+1+a2+2ab+b2
=a2b2+1+a2+b2=a2(b2+1)+(b2+1) = (a2+1)(b2+1)
c)x3−4x2+12x−27
=x3−27+(−4x2+12x)
=(x−3)(x2+3x+9)−4x(x−3)
=(x−3)(x2+3x+9−4x)
=(x−3)(x2−x+9)
b)x3+2x2+2x+1
=x3+2x2+x+x+1
=x(x2+2x+1)+(x+1)
=x(x+1)2+(x+1)
=(x+1)(x(x+1)+1)
=(x+1)(x2+x+1)
d)x4−2x3+2x−1
=x4−2x3+x2−x2+2x−1
=x2(x2−2x+1)−(x2−2x+1)
=(x2−2x+1)(x2−1)
=(x−1)2(x−1)(x+1)
=(x−1)3(x+1)
e)x4+2x3+2x2+2x+1
=x4+2x3+x2+x2+2x+1
=x2(x2+2x+1)+(x2+2x+1)
=(x2+2x+1)(x2+1)
=(x+1)2(x2+1)
Bài 1:
a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10
b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61
Bài 2:
a)(2x-1)^2-(x+3)^2 = 0
<=> (2x-1-x-3).(2x-1+x+3) =0
<=>(x-4).(3x+2) = 0
<=> x-4 = 0 hoặc 3x+2=0
*x-4=0 => x=4
*3x+2 = 0 => 3x=-2 => x=-2/3
b)x^2(x-3)+12-4x=0 <=> x^2(x-3) - 4(x-3) =0 <=> (x-3).(x-2)(x+2) <=> x-3=0 hoặc x-2=0 hoặc x+2 =0
*x-3=0 => x=3
*x-2=0 =>x=2
*x+2=0 =>x=-2
c) 6x^3 -24x =0 <=> 6x(x^2 -4)=0 <=> 6x(x-2)(x+2)=0 <=> x=0 hoặc x-2 =0 hoặc x+2=0 <=> x=0 hoặc x=2 hoặc x=-2
\(a,x^3+9x^2+27x+27-27z^3\)
\(=\left(x+3\right)^3-\left(3z\right)^3\)
\(=\left(x+3-3z\right)\left(x^2+6x+9+3xz+9z+9z^2\right)\)
.........
\(b,\)
\(=\left(x+1\right)^2\left(x-3\right)+x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+1\right)\)
\(c,\)
\(=x^2\left(x^2+10\right)-2x\left(x^2+10\right)\)
\(=x\left(x-2\right)\left(x+10\right)\)
\(A=x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Ta có: \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1\ge1\)
Vậy \(A_{min}=1\)(Dấu "="\(\Leftrightarrow x=3\))
a) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3+3x^2\right)=2\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)
\(\Leftrightarrow3x+1=2\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\frac{1}{3}\)
2.Tim x
a,(2x+1)2-4(x+2)2=9
<=> (4x2+4x+1)-4(x2+4x+4)=9
<=> -12x-15=9
<=> -12x=24
<=> x=-2
\(1a,\)\(\left(x^2-0,1\right)=\left(x-\sqrt{0,1}\right)\left(x+\sqrt{0,1}\right)\)
\(1b,\)\(\left(2a^2+b^2\right)^2=\left(2a^2\right)^2+2.2a^2.b^2+\left(b^2\right)^2=4a^4+4a^2b^2+b^4\)
\(1c,\)\(\left(a^2+5\right)\left(5-a^2\right)=\left(5+a^2\right)\left(5-a^2\right)=25-x^4\)
C. \(\left(3x-1\right)^2=\left(1-3x\right)^2\)
Vì ta có \(|3x-1|=|1-3x|\)
\(\Rightarrow\left(3x-1\right)^2=\left(1-3x\right)^2\)
Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.
Bài 2:
a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)
\(=4x^2+20x+25\)
b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)
\(=9x^2+24x+16\)
c/\(\left(3x+5y+\frac{1}{2}\right)^2\)
Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:
(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)
\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)
Bài 3:
a/ A= x2+10x+30
A= x2+2.5x+25+5
A= x2+2.5.x+52+5
A=(x+5)2+5
Ta có (x+5)2 luôn luôn > hoặc = 0
=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)
=> A luôn dương.
b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)
\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)
(Tương tự như câu A)
Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0
=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)
=> B luôn dương.
c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)
(Chứng minh tương tự câu a, b)
Chúc bạn học tốt!!
mk giúp bạn bài 3 còn bài 1, 2 tự làm nha
a , A = x2 + 10x +30
= (x2 + 2 . 5 . x +52 ) +5
= (x+5)2 + 5
Vì (x+5)2 >= 0 (luôn đúng)
=> (x+5)2 + 5 luôn luôn dương
A
A