Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x-y\sqrt{2021}}{y-z\sqrt{2021}}=\frac{m}{n}\inℚ\left(m,n\inℤ,n\ne0\right)\Rightarrow nx-ny\sqrt{2021}=my-mz\sqrt{2021}\)\(\Rightarrow nx-my=\left(ny-mz\right)\sqrt{2021}\)
Vì x, y, z, m, n là các số nguyên nên \(nx-my\inℤ\)và \(ny-mz\inℤ\)
Khi đó: \(nx-my=0\)và \(ny-mz=0\)suy ra \(\frac{m}{n}=\frac{y}{z}=\frac{x}{y}\Rightarrow y^2=xz\)
Theo đề bài thì \(x^2+y^2+z^2\)là số nguyên tố hay \(x^2+2y^2+z^2-y^2=x^2+2zx+z^2-y^2=\left(x+z\right)^2-y^2=\left(x+y+z\right)\left(x+z-y\right)\)là số nguyên tố
Khi đó \(x+z-y=1\Leftrightarrow x+z=1+y\)
\(\Rightarrow x^2+z^2+2y^2=y^2+2y+1\Leftrightarrow\left(y-1\right)^2+x^2+z^2-2=0\)
Vì x, y, z là số nguyên dương nên x = y = z = 1
Với x = y \(\ge\)0=> \(\sqrt{x}=\sqrt{y}\) là số hữu tỉ
Với \(x\ne y>0\)
Đặt \(\sqrt{x}+\sqrt{y}=t\) là số hữu tỉ
=> \(\frac{x-y}{\sqrt{x}-\sqrt{y}}=t\Rightarrow\sqrt{x}-\sqrt{y}=\frac{x-y}{t}\) là số hữu tỉ
=> \(\sqrt{x};\sqrt{y}\) là số hữu tỉ
$\left ( a+b\sqrt{2} \right )^{1994}+\left ( c+d\sqrt{2} \right )^{1994}= 5+4\sqrt{2}$ - Đại số - Diễn đàn Toán học
Giả sử \(x+\sqrt{2}\) hữu tỉ thì \(x=-\sqrt{2}\) do \(\sqrt{2}\) vô tỉ
Do đó \(x\) vô tỉ
Vậy \(x^3+\sqrt{2}\) vô tỉ
Vậy ko tồn tại số thực x tm đề
Hmm cái này ko chắc :))