Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ S1 = 1 + (-2) + 3 + (-4) + .. . + 2001 + ( -2002)
S1 = [1 + (-2)] + [3 + (-4)] + .. . + [2001 + ( -2002)]
S1 = (-1) + (-1) + ... + (-1)
2002 : 2 = 1001
S1 = (-1) . 1001
S1 = (-1001)
b/ S2 = 1 + (-3) + 5 + (-7) + .. . + (-1999) + 2001
S2 = [1 + (-3)] + [5 + (-7)] + .. . + [1997 + (-1999)] + 2001
S2 = (-2) + (-2) + ... + (-2) + 2001
(1991 - 1) : 2 + 1 = 996 : 2 = 498
S2 = (-2) . 498 + 2001
S2 = (-996) + 2001
S2 = 1005
c/ S3 = 1 + (-2) + (-3) + 4 + 5 + (-6) + (-7) + 8 + .. . + 1997 + (-1998) + (-1999) + 2000
S3 = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 1997 + 1998 - 1999 - 2000
S3 =(1 + 2 - 3 - 4)+(5 + 6 - 7 - 8)+ ... +(1997 + 1998 - 1999 - 2000)
S3 = (-4) + (-4) + ... + (-4)
2000 : 4 = 500
S3 = (-4) . 500
S3 = -2000
bài 1 :
a) S1=( 1 + 3 - 5 - 7 )+(9+11-13-15)+...+(393+395-397-399)
S1=(-8)+(-8)+...+(-8)
S1=(-8)*199
S1=-1592
b)S2=(1-2-3+4)+( 5 - 6 - 7 +8)+...+( 97 - 98 - 99 + 100)
S2=0+0+...+0
S2=0*100
S2=0
phần c và d tương tự nhé
BÀI 2
c)<=>2(x-1)+4 chia hết x-3
=>8 chia hết x-3
=>x-3\(\in\){-1,-2,-4,-8,1,2,4,8}
=>x\(\in\){2,1,-1,-5,4,5,7,11}
S1 = \(\frac{N.\left(N+1\right)}{2}\)
S2 = 2S1 = N.(N+1)
S3 = \(\frac{\left(2n-1\right).2n.\left(2n+1\right)}{6}\)
Ta thấy : nhóm 1 có 2 số hạng,số đầu là 1=1
nhóm 2 có 3 số hạng,số đầu là 3=1+2
nhóm 3 có 4 số hạng,số đầu là 6=1+2+3
nhóm 4 có 5 số hạng,số đầu là 10=1+2+3+4
nhóm 100 có 101 số hạng,số đầu là 1+2+3+...+99+100
số hạng đầu của nhóm 100 là:(1+100)*100/2=5050
số cuối của nhóm 100 là:5050+(101-1)*1=5150
Tổng các số hạng của nhóm 100 là:
(5050+5150)*101/2=515100
Vậy S100 = 515100
Ta có: S1 = 2-4+6-8+...+1998-2000
= (2-4)+(6-8)+...+(1998-2000)
= -2 + (-2) + ......+ (-2)
= -2000
S2 =2-4-6+8+10-12-14+16+...+1994-1996-1998+2000
=( 2 - 4 - 6 + 8) + ( 10 - 12 - 14 + 16) + ................+ (1994 - 1996 - 1998 + 2000)
= 0 + 0 + ......... + 0
= 0
S1 = 1 + (-2) + 3 + (-4) + ... + 2001 + (-2002)
= 1 - 2 + 3 - 4 + ... + 2001 - 2002
= (1 - 2) + (3 - 4) + ... + (2001 - 2002) (Có tất cả số cặp là: [(2002 - 1) : 1 + 1] : 2 = 1001 (cặp))
= (-1) + (-1) +...+ (-1) } 1001 chữ số (-1)
= (-1) . 1001
= (-1001)
S2 = 1 + (-3) + 5 + (-7) +...+ (-1999) + 2001
= 1 - 3 + 5 - 7 + ... - 1999 + 2001
= (1 - 3) + (5 - 7) + ... (1997 - 1999) + 2001 (Có số cặp là: [(1999 - 1):2 + 1] : 2 = 500 (cặp))
= (-2) + (-2) + ... + (-2) + 2001 } 500 số (-2)
= (-2) . 500 + 2001
= -1000 + 2001
= 1001
ta có
\(S_2=\left(1-3\right)+\left(5-7\right)+..+\left(1997-1999\right)+2001\)
ha y \(S_2=-2-2-2..+2001=-2.500+2001=1001\)
\(S_3=\left(1-2-3+4\right)+\left(5-6-7+8\right)+..+\left(1997-1998-1999+2002\right)\)
hay \(S_3=0+0+..+0=0\)
\(S_2=\left(1-3\right)+\left(5-7\right)+...+\left(1997-1999\right)+2001\)
\(=\left(-2\right)+\left(-2\right)+....+\left(-2\right)+2001=\left(-2\right).500+2001=-1000+2001=1001\)
\(S_3=\left(0+1-2-3\right)+\left(4+5-6-7\right)+...+\left(1996+1997-1998-1999\right)+2000\)
\(=-4+\left(-4\right)+...+\left(-4\right)+2000=\left(-4\right).500+2000=0\)
hãy tính tổng S , biết : S = 1+2+ 3+....2000+2001+2002