Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5+\sqrt{3}-5+\sqrt{3}}{25-3}=\frac{2\sqrt{3}}{22}=\frac{\sqrt{3}}{11}\\ \)
học tốt
\(\frac{1}{5-\sqrt{3}}-\frac{1}{5+\sqrt{3}}\)
\(=\frac{5+\sqrt{3}}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}-\frac{5-\sqrt{3}}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}\)
\(=\frac{5+\sqrt{3}-\left(5-\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}\)
\(=\frac{5+\sqrt{3}-\left(5-\sqrt{3}\right)}{22}\)
\(=\frac{5+\sqrt{3}-5+\sqrt{3}}{22}\)
\(=\frac{2\sqrt{3}}{22}=\frac{\sqrt{3}}{11}\)
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
a) \(\sqrt{4,9.1350.0,6}=\frac{7\sqrt{10}}{10}.15\sqrt{6}.\frac{\sqrt{15}}{5}=63\)
b) \(\sqrt{12,5}.\sqrt{0,2}.\sqrt{0,1}=\frac{5\sqrt{2}}{2}.\frac{\sqrt{5}}{5}.\frac{\sqrt{10}}{10}=\frac{1}{2}\)
c) \(\sqrt{\frac{484}{169}}=\frac{22}{13}\)
d) \(\sqrt{\frac{2}{288}}=\sqrt{\frac{1}{144}}=\frac{1}{12}\)
e) \(\frac{\sqrt{2^5}}{\sqrt{2^3}}=\sqrt{2^2}=2\)
a) \(\sqrt{6,4.361}=\sqrt{6,4}.\sqrt{361}=\sqrt{16.0,4}.19\)
\(=\sqrt{16}.\sqrt{0,4}.19=4.\sqrt{0,4}.19=76.\sqrt{0,4}\)
b) \(\sqrt{9,9.1,1}=\sqrt{9.1,1.1,1}=\sqrt{9.1,1^2}=\sqrt{9}.\sqrt{1,1^2}=3.1,1=3,3\)
\(a,\sqrt{6,4.361}=\sqrt{2310,4}=\frac{76\sqrt{10}}{5}\)
\(b,\sqrt{9,9.1,1}=\sqrt{10,89}=3,3\)
a)6,6
b)3,5
a) \(\sqrt{40}.\sqrt{12,1}.\sqrt{0,09}=\sqrt{40.12,1.0,09}=\sqrt{\frac{1089}{25}}=\frac{33}{5}\)
b) \(\sqrt{3,5}.\sqrt{2,5}.\sqrt{7}.\sqrt{\frac{1}{5}}=\sqrt{3,5.2,5.7.\frac{1}{5}}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)