K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2015

A= 1/(1x3) + 1/(3x5)+ 1/(5x7) + 1/(7x9) +  1/(9x11)

A x 2 = 2/(1x3) + 2/(3x5)+ 2/(5x7) + 2/(7x9) +  2/(9x11)

Nhận xét :

2/(1x3) = 1 - 1/3

2/(3x5) = 1/3 - 1/5

2/(5x7) = 1/5 - 1/7

2/(7x9) = 1/7 - 1/9

2/(9x11) = 1/9 - 1/11

A x 2 = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11

A x 2 = 1 - 1/11

A x 2 = 10/11

A = 10/11 : 2 = 5/11

3 tháng 4 2018

trả lời ngăn gọn một chút thì nó là 5/11

4 tháng 8 2015

Ta có:

1x3+3x5+....+2011x2013

= (1x3+3x5+.5x7 + 7x9 + 9x11) + (11x13+13x15+…+19x21) +…

+(2001x2003+2003x2005+…+2009x2011) + 2011x2013

Ta tính số nhóm : (2011-11) :10+1 = 201 nhóm

Mỗi nhóm này có chữ số tận cùng là 5 => có lẻ nhóm => tổng có tận cùng là 5 =>cộng thêm 3 của 2011x2013=> tận cùng là 
-_______________________________________________________________
lik-e cho mình nhé bnTuan Anh Bui

11 tháng 11 2016

nếu các chữ số là chữ số lẻ thì dãy số đó có tận cùng là chữ số 5

chúc bạn học giỏi hơn

1 tháng 4 2019

\(E=\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)

\(\Rightarrow E=2\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\) (đặt  2  làm nhân tử chung để ta có các số hạng trong ngoặc có hiệu 2 số ở mẫu = tử)

\(\Rightarrow E=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow E=2.\left(1-\frac{1}{99}\right)\)

\(\Rightarrow E=2.\frac{98}{99}\)

\(\Rightarrow E=\frac{196}{99}\)

*Không biết có đúng ko :)

1 tháng 4 2019

k roy nha

24 tháng 3 2019

Ta có:

\(S=\frac{4}{1.3}+\frac{16}{3.5}+\frac{36}{5.7}+........+\frac{2500}{49.51}\)

19 tháng 8 2023

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\) 

 

 

19 tháng 8 2023

\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)

=\(\dfrac{5}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99+101}\right)\)

=\(\dfrac{5}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\) 

=\(\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{5}{2}-\dfrac{100}{101}\)

\(\dfrac{305}{202}\)

25 tháng 7 2016

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{13}-\frac{1}{15}\)

\(=1-\frac{1}{15}\)

\(=\frac{14}{15}\)

24 tháng 6 2017

\(M=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(M=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=2\left(1-\frac{1}{100}\right)\)

\(M=2.\frac{99}{100}\)

\(M=\frac{99}{50}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{97.99}\)

\(N=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}\left(1-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\frac{98}{99}\)

\(N=\frac{49}{33}\)

23 tháng 4 2018

Câu hỏi của Lê Phương Thảo - Toán lớp 6 - Học toán với OnlineMath