K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2021

a, \(108^2-92^2=\left(108-92\right)\left(108+92\right)=16.200=3200\)

c, \(31^2-31.22+11^2=31^2-2.31.11+11^2=\left(31-11\right)^2=20^2=400\)

a: \(108^2-92^2=3200\)

b: \(102^2+128\cdot26-27^2=9675+3328=13003\)

c: \(31^2-31\cdot22+11^2=20^2=400\)

21 tháng 7 2019

\(a)=\left(27+73\right)^2=100^2=10000\)

\(b)=\left(63-13\right)^2=50^2=2500\)

2.Tim x

a,(2x+1)2-4(x+2)2=9

<=> (4x2+4x+1)-4(x2+4x+4)=9

<=> -12x-15=9

<=> -12x=24

<=> x=-2

19 tháng 6 2019

\(1a,\)\(\left(x^2-0,1\right)=\left(x-\sqrt{0,1}\right)\left(x+\sqrt{0,1}\right)\)

\(1b,\)\(\left(2a^2+b^2\right)^2=\left(2a^2\right)^2+2.2a^2.b^2+\left(b^2\right)^2=4a^4+4a^2b^2+b^4\)

\(1c,\)\(\left(a^2+5\right)\left(5-a^2\right)=\left(5+a^2\right)\left(5-a^2\right)=25-x^4\)

19 tháng 9 2018

a ) A = 4x2 + 4x + 11

         = 4x2 + 4x + 1 + 10

          = ( 2x + 1 )2 + 10

Nhận xét : ( 2x + 1 )2 > 0 với mọi x thuộc R

       => ( 2x + 1 )2 + 10 > 10

       => A > 10

=> Giá trị nhỏ nhất của A là 10

Dấu = xảy ra khi :  ( 2x + 1 )2 = 0

                             => 2x + 1 = 0

                              => x = \(-\frac{1}{2}\)

Vậy giá trị nhỏ nhất của A là 10 khi x = \(-\frac{1}{2}\)

b ) B = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )

        = ( x - 1 ) ( x + 6 ) ( x + 2 ) ( x  + 3 )

        = ( x2 + 5x - 6 ) ( x2 + 5x + 6 )

Đặt t = x2 + 5x 

=> B = ( t - 6 ) ( t + 6 )

         = t2 - 36

Nhận xét : 

 t2 > 0 với mọi t thuộc R

=> t2 - 36 > - 36

=> B > - 36

=> Giá trị nhỏ nhất của B là - 36

Dấu = xảy ra khi : t2 = 0

                        => t = 0

                  mà t = x2 + 5x

                         => x2 + 5x = 0

                          => x ( x + 5 ) = 0

                        => \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)

                        => \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

Vậy giá trị nhỏ nhất của B là - 36 khi \(x\in\left\{0;-5\right\}\)

c )  C = x2 - 2x + y2 - 4y + 7

            = ( x2 - 2x + 1 ) +  ( y2 - 4y + 4 )  + 2

            = ( x - 1 )2 + ( y - 2 )2 + 2

Nhận xét : 

( x - 1 )2 > 0 với mọi x thuộc R

( y - 2 )2 > 0 với mọi y thuộc R

=> ( x - 1 )2 + ( y - 2 )2 > 0

=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2

=> C > 2

=> Giá trị nhỏ nhất của C là 2

Dấu = xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)

                           => \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)

                            => \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy giá trị nhỏ nhất của C là 2 khi x = 1 và y = 2

6 tháng 9 2020

a) \(2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)

\(\Leftrightarrow5x=-17\)

\(\Rightarrow x=-\frac{17}{5}\)

b) \(\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)

\(\Leftrightarrow10=1\)

=> vô nghiệm 

c) \(\left(x-1\right)^2+\left(x-2\right)^2=2\left(x+4\right)^2-\left(22x+27\right)\)

\(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+8x+8-22x-27\)

\(\Leftrightarrow8x=-24\)

\(\Rightarrow x=-3\)

6 tháng 9 2020

a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )

<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )

<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6

<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9

<=> 5x = -17

<=> x = -17/5

b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2

<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1

<=> x2 + 4x - 2x - x2 - 2x = 1 - 4 - 6

<=> 0x = -9 ( vô lí )

Vậy phương trình vô nghiệm

c) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )

<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27

<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27

<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5

<=> 0x = 0 ( đúng ∀ x ∈ R )

Vậy phương trình nghiệm đúng ∀ x ∈ R

4 tháng 9 2019

A= (6x-2)^2 + (2-5x)^2+2(6x-2)(2-5x)

= (6x-2)^2 +2(6x-2)(2-5x)+ (2-5x)^2

\(=\left(6x-2+2-5x\right)^2=x^2\)

B= (2a^2+2a+1)(2a^2-2a+1)-(2a^2+1)^2

\(=\left(2a^2+1\right)^2-4a^2-\left(2a^2+1\right)^2=4a^2\)

C=(x+3)(x^2-3x+9)-(54+x^3)

\(=\left(x^3+27\right)-54-x^3=27\)

D=(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)

\(=\left(2x+y\right)^3-\left(2x-y\right)^3\)

E=(a+b)^2-(a-b)^2

\(=\left(a+b+a-b\right)\left(a+b-a+b\right)=2a.2b=4ab\)

4 tháng 9 2019

Secret Personv: thật.CTV lạ z

\(C=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3-27-54-x^3=-81\)

21 tháng 7 2019

\(\text{a)}x^3-6x^2+12x-8\)

\(=x^3-2x^2-4x^2+8x+4x-8\)

\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)

\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)\left(x+2\right)^2\)

21 tháng 7 2019

\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)

Bài 2:

\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)

\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)

Bài 3:

\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)

\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)