\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2015

tính bằng cách 2A -A là xong thôi !

21 tháng 3 2015

2M = 2 .( 1/2 + 1/2^2 + 1/2^ 3 + ... + 1/2^100 + 1/2^100 )

sau đó nhân vô rùi trừ đi 1M nếu sai thì làm cách khác !

27 tháng 5 2015

Ta có:

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)

\(\Rightarrow2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(\Rightarrow A=2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)\)

\(=1-\frac{1}{2^{100}}\)

27 tháng 5 2015

Nguyễn Thái Tuán thông minh ghê :hanclap

\(\frac{2^{100}-1}{2^{100}}=1\):troll

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

13 tháng 3 2020

đề phía sau dấu   <    hình như sai

Một số 3/16 thôi mk ghi nhầm

1 tháng 7 2015

\(\frac{1}{2^1}+\frac{2}{3^2}+\frac{3}{4^3}+...+\frac{99}{100^{99}}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)

Vậy \(\frac{1}{2^1}+\frac{2}{3^2}+\frac{3}{4^3}+...+\frac{99}{100^{99}}<1\)

3 tháng 12 2018

MỚI LÀM LÚC TỐI,HÊN QUÁ:

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(4A=3-\left(\frac{101}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{203}{3^{100}}\)

\(A=\frac{3}{4}-\frac{203}{3^{100}\cdot4}< \frac{3}{4}\)

1 tháng 6 2018

a/ \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+........+\frac{99}{100!}\)

\(\Leftrightarrow A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+......+\frac{100-1}{100!}\)

\(\Leftrightarrow A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+.....+\frac{100}{100!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{99!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{100!}\)

b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{9900}\)