K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2021

Đặt \(2017=a\)

\(A=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2a+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1\right)^2-2\left(a+1\right)\cdot\dfrac{a}{a+1}+\left(\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\sqrt{\left(a+1-\dfrac{a}{a+1}\right)^2}+\dfrac{a}{a+1}\\ A=\left|a+1-\dfrac{a}{a+1}\right|+\dfrac{a}{a+1}\)

Ta có \(\dfrac{a}{a+1}< 1\Leftrightarrow a+1-\dfrac{a}{a+1}>0\)

\(\Leftrightarrow A=a+1-\dfrac{a}{a+1}+\dfrac{a}{a+1}=a+1=2018\)

31 tháng 7 2018

a/ Ta có:

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\)

\(\Rightarrow A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

31 tháng 7 2018

a.\(A=\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2018}}=\dfrac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{2019}-\sqrt{2018}}{\left(\sqrt{2019}+\sqrt{2018}\right)\left(\sqrt{2019}-\sqrt{2018}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2019}-\sqrt{2018}=\sqrt{2019}-1\)

16 tháng 6 2018

Đat 2017,5=t Ta có

\(\sqrt{\dfrac{\left(t+0,5\right)^2+\left(t-0,5\right)^2\cdot\left(t+0,5\right)^2+\left(t-0,5\right)^2}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\sqrt{\dfrac{t^2+t+0,25+t^4-0,5t^2+0,0625+t^2-t+0,25}{\left(t+0,5\right)^2}}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{\sqrt{t^4+1,5t^2+0,5625}}{t+0,5}+\dfrac{t-0,5}{t+0,5}\\ =\dfrac{t^2+0,75+t-0,5}{t+0,5}\\ =\dfrac{\left(t+0,5\right)^2}{t+0,5}\\ =t+0,5\)thay t=2017,5 vào suy ra A=2017,5+0,5=2018

16 tháng 6 2018

Giải:

\(\sqrt{1+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\) (\(\left\{{}\begin{matrix}1>0\\2017^2>0\\\dfrac{2017^2}{2018^2}>0\end{matrix}\right.\Leftrightarrow1+2017^2+\dfrac{2017^2}{2018^2}>0\ne0\))

\(=1+2017+-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)

\(=2018\)

Vậy ...

16 tháng 10 2018

\(B=\sqrt{1+2017^2+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{\left(1+2.2017+2017^2\right)-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{\left(1+2017\right)^2-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{2018^2-2.2017+\frac{2017^2}{2018^2}}+\frac{2017}{2018}\)

\(B=\sqrt{\left(2018-\frac{2017}{2018}\right)^2}+\frac{2017}{2018}\)

Mà  \(\frac{2017}{2018}< 1\Rightarrow2018-\frac{2017}{2018}>0\)

\(\Rightarrow B=2018-\frac{2017}{2018}+\frac{2017}{2018}\)

\(B=2018\)

Vậy bt B có giá trị nguyên 

16 tháng 10 2018

Cảm ơn bạn mk vừa đăng lên thì đã thấy luôn cách giải 😂

Sửa đề: \(M=\sqrt{1^2+2017^2+\dfrac{2017^2}{2018^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{1^2+\dfrac{1}{\left(\dfrac{1}{2017}\right)^2}+\dfrac{1}{\left(-\dfrac{2018}{2017}\right)^2}}+\dfrac{2017}{2018}\)

\(=\sqrt{\left(\dfrac{1}{1}+\dfrac{1}{\dfrac{1}{2017}}+\dfrac{1}{-\dfrac{2018}{2017}}\right)^2}+\dfrac{2017}{2018}\)

\(=1+2017-\dfrac{2017}{2018}+\dfrac{2017}{2018}\)

=2018

25 tháng 9 2017

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2018}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}-\dfrac{1}{a+b+c}=0\left(a+b+c=2018\right)\)

\(\Leftrightarrow\dfrac{a+b}{ab}+\dfrac{a+b+c-c}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[\dfrac{1}{ab}+\dfrac{1}{c\left(a+b+c\right)}\right]\left(a+b\right)=0\)

\(\Leftrightarrow\dfrac{ac+bc+c^2+ab}{abc\left(a+b+c\right)}\times\left(a+b\right)=0\)

\(\Leftrightarrow\dfrac{\left(a+c\right)\left(b+c\right)\left(a+b\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\b=-c\\a=-b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=2018\\a=2018\\c=2018\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{1}{2018^{2017}}\)

14 tháng 4 2018

hình như bạn bị sai rồi

a=-c

a=-b

b=-c

=>a=-b=-(-c)=c

mà a=-c =>vô lý

25 tháng 11 2018

Ta có \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}=\sqrt{\dfrac{2\sqrt{3}+2}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}-\dfrac{3\left(2\sqrt{3}-2\right)}{\left(2\sqrt{3}-2\right)\left(2\sqrt{3}+2\right)}}=\sqrt{\dfrac{2\left(\sqrt{3}+1\right)}{12-4}-\dfrac{2\left(3\sqrt{3}-3\right)}{12-4}}=\sqrt{\dfrac{\sqrt{3}+1}{4}-\dfrac{3\sqrt{3}-3}{4}}=\sqrt{\dfrac{\sqrt{3}+1-3\sqrt{3}+3}{4}}=\sqrt{\dfrac{4-2\sqrt{3}}{4}}=\dfrac{\sqrt{4-2\sqrt{3}}}{\sqrt{4}}=\dfrac{\sqrt{3-2\sqrt{3}+1}}{2}=\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}=\dfrac{\left|\sqrt{3}-1\right|}{2}=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow2x=\sqrt{3}-1\Leftrightarrow2x+1=\sqrt{3}\Leftrightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)

Ta lại có \(P=\dfrac{4\left(x+1\right)x^{2018}-2x^{2017}+2x+1}{2x^2+3x}=\dfrac{2x^{2017}\left[2\left(x+1\right)x-1\right]+\sqrt{3}}{2x^2+2x-1+x+1}=\dfrac{2x^{2017}\left[2x^2+2x-1\right]+\sqrt{3}}{x+1}=\dfrac{\sqrt{3}}{x+1}=\sqrt{3}:\left(x+1\right)=\sqrt{3}:\left(\dfrac{\sqrt{3}-1}{2}+1\right)=\sqrt{3}:\dfrac{\sqrt{3}+1}{2}=\dfrac{2\sqrt{3}}{\sqrt{3}+1}=\dfrac{2\sqrt{3}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{2\left(3-\sqrt{3}\right)}{2}=3-\sqrt{3}\)Vậy khi \(x=\sqrt{\dfrac{1}{2\sqrt{3}-2}-\dfrac{3}{2\sqrt{3}+2}}\) thì P=\(3-\sqrt{3}\)