Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|a+2\right|=a\)
\(\Rightarrow a+2=\hept{\begin{cases}a\\-a\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-a=2\\-a-a=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}0=2\left(loai\right)\\-2a=2\end{cases}}\)
\(\Rightarrow a=-1\)
Trong tập chứa x
Ta thấy: \(-\frac{3}{20}>-\frac{1}{2}>-\frac{1}{4}>-\frac{7}{10}\)
Trong tập chứa y
Ta thấy: \(\frac{11}{21}< \frac{4}{7}< \frac{2}{3}\)
a) Giá trị lớn nhất của x+y khi x lớn nhất và y lớn nhất
\(\frac{2}{3}+\left(-\frac{3}{20}\right)=\frac{31}{60}\)
b) Giá trị bé nhất của x+y khi x bé nhất và y bé nhất
\(\frac{11}{21}+\left(-\frac{7}{10}\right)=-\frac{3}{20}\)
\(\frac{x}{y}=a\Rightarrow x=ay\)
\(\Rightarrow\frac{x+y}{x-y}=\frac{ay+y}{ay-y}=\frac{y\left(a+1\right)}{y\left(a-1\right)}=\frac{a+1}{a-1}\)
\(\frac{a}{b}=2\Rightarrow a=2b;\frac{c}{b}=3\Rightarrow c=3b\Rightarrow c-b=2b\)
\(\Rightarrow a=c-b\)
\(\Rightarrow\frac{a+c}{b+c}=\frac{c-b+b}{b+c}=\frac{b}{b+c}\)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15