K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2016

2) Ta có: 

xy2 + 2xy -243y +x = 0

 x( y2 + 2y + 1) -243y = 0

 x(y+1)2 = 243y

 x = 243y(y+1)2

Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1  243 chia hết (y+1)2 

 (y+1)2 thuộc {9; 81}

 y+1 thuộc {3; -3; 9; -9}

 y thuộc {2; -4; 8; -10}

 x thuộc {54; -108; 24; -30}

Ta loại trường hợp x âm vì x= 243y(y+1)2 >0

Vậy (x; y) = (54; 2) (24; 8)

em moi hoc lop 6 cho minh xin loi

5 tháng 12 2024

2) Ta có: 

xy2 + 2xy -243y +x = 0

 x( y2 + 2y + 1) -243y = 0

 x(y+1)2 = 243y

 x = 243y(y+1)2

Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1  243 chia hết (y+1)2 

 (y+1)2 thuộc {9; 81}

 y+1 thuộc {3; -3; 9; -9}

 y thuộc {2; -4; 8; -10}

 x thuộc {54; -108; 24; -30}

Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)

 

18 tháng 8 2019

\(A=\left(x-y\right)^2=3^2=9\)

Ta có:

\(\left(x+y\right)^2=x^2+2xy+y^2=\left(x-y\right)^2+4xy=9^2+4\cdot10=121\)

\(\Rightarrow x+y=11;x+y=-11\) ( trường hợp này 11 cũng như -11 thôi nha nên mik chỉ xét 1 trường hợp thôi )

\(B=x^4+y^4\)

\(=\left(x+y\right)^4-\left(4x^3y+6x^2y^2+4xy^3\right)\)

\(=11^4-2xy\left(x^2+3xy+2y^2\right)\)

\(=11^4-2\cdot10\left[2\left(x+y\right)^2+xy\right]\)

\(=11^4-20\left(2\cdot11^2+10\right)\)

\(=9601\)

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

11 tháng 12 2017

x2+2y2+2xy-4y+4=0

(x2+2xy+y2)+ (y2-4y+4) = 0

(x+y)2 + (y-2)2 = 0

Với mọi x, y ta luôn có

(x+y)2 >= 0

(y-2)2 >= 0 

do đó (x+y)2 + (y-2)2 >= 0

Dấu = xảy ra khi

x+y=0 và y-2=0

=> x=-2 và y = 2

Thay vào B rồi tính ra B= -4

25 tháng 9 2019

Ta có:

\(x^2+2y^2+2xy-4y+4=0\)

\(\left(x^2+2xy+y^2\right)+\left(y^2-4y+4\right)=0\)

\(\left(x+y\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x+y\right)^2+\left(y-2\right)^2\ge0\)vs mọi x, y

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=2\end{cases}}}\)

Thay x= -2, y=2 vào biểu thức B, ta đc:

\(B=\left(4+4+48\right)\div\left(-2-2\right)\)

\(B=56\div\left(-4\right)=-8\)

Vậy B= -8 tại x=-2, y=2

21 tháng 10 2018

\(x^3-y^3-x^2+2xy-y^2=\left(x-y\right)\left(xy\right)=5.6=30\)

12 tháng 11 2019

Ta có:

x3 - y3 - x2 + 2xy - y2

= (x - y)(x2 + xy + y2)  - (x - y)2

= (x - y)(x2 - 2xy + y2) + 3xy(x - y) - (x - y)2

= (x - y)3 + 3xy(x - y) - (x - y)2

= 53 + 3.6.5 - 52

= 125 + 90 - 25

= 190

14 tháng 3 2019

\(y^2-\left(y+2\right).x^2=1\)

\(y.\left(y+2\right)-\left(y+2\right).x^2-2y=1\)

\(y.\left(y+2\right)-\left(y+2\right).x^2-2.\left(y+2\right)+4=1\)

\(\left(y+2\right).\left(y-x^2-2\right)=-3\)

:)) tự làm tiếp 

15 tháng 3 2019

Bài này không chắc nha!

\(y^2-\left(y+2\right)x^2-1=0\).Coi đây là pt bậc 2 ẩn y:

\(\Delta=\left(y+2\right)^2+4\ge0\)

Ta cần có \(\left(y+2\right)^2+4=k^2\Leftrightarrow\left(y+2-k\right)\left(y+2+k\right)=-4\)