Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )
<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )
<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6
<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9
<=> 5x = -17
<=> x = -17/5
b) ( x - 1 )2 - 2( x - 3 ) = ( x + 1 )2
<=> x2 - 2x + 1 - 2x + 6 = x2 + 2x + 1
<=> x2 - 2x - 2x - x2 - 2x = 1 - 1 - 6
<=> -6x = -6
<=> x = 1
c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2 + 3x2 = -33
<=> x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 ) + 3x2 = -33
<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6 + 3x2 = -33
<=> x3 - 9x2 + 27x - x3 + 6x2 + 12x + 3x2 = -33 - 27 + 27 - 6
<=> 39x = -39
<=> x = -1
a) Đặt \(a=x-1\)\(\Rightarrow\)\(\hept{\begin{cases}x+3=a+4\\x-2=a-1\\x+1=a+2\end{cases}}\)
Ta có: \(2a^2+\left(a+4\right)^2=3.\left(a-1\right)\left(a+2\right)\)
\(\Leftrightarrow2a^2+a^2+4a+4=3.\left(a^2+a-2\right)\)
\(\Leftrightarrow3a^2+4a+4=3a^2+3a-6\)
\(\Leftrightarrow a=-10\)
\(\Rightarrow x-1=-10\)
\(\Leftrightarrow x=-9\)
Vậy \(S=\left\{-9\right\}\)
b) Đặt \(b=x-1\)\(\Rightarrow\)\(\hept{\begin{cases}x-3=b-2\\x+1=b+2\end{cases}}\)
Ta có: \(b^2-2.\left(b-2\right)=\left(b+2\right)^2\)
\(\Leftrightarrow b^2-2b+4=b^2+4b+4\)
\(\Leftrightarrow-6b=0\)
\(\Leftrightarrow b=0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(S=\left\{1\right\}\)
c) Ta có: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)
\(\Leftrightarrow\left(x-3\right)^3-\left(x-3\right)^3+6\left(x^2+2x+1\right)+3x^2+33=0\)
\(\Leftrightarrow6x^2+12x+6+3x^2+33=0\)
\(\Leftrightarrow9x^2+12x+39=0\)
\(\Leftrightarrow\left(9x^2+12x+4\right)+35=0\)
\(\Leftrightarrow\left(3x+2\right)^2+35=0\)
Vì \(\left(3x+2\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(3x+2\right)^2+35\ge35>0\forall x\)
mà \(\left(3x+2\right)^2+35=0\)
\(\Rightarrow\)\(\left(3x+2\right)^2+35=0\)vô nghiệm
Vậy \(S=\varnothing\)
a) ( x - 1 )3 - 4x( x + 1 )( x - 1 ) + 3( x - 1 )( x2 + x + 1 )
= x3 - 3x2 + 3x - 1 - 4x( x2 - 1 ) + 3( x3 - 13 )
= x3 - 3x2 + 3x - 1 - 4x3 + 4x + 3x3 - 3
= ( x3 - 4x3 + 3x3 ) - 3x2 + ( 3x + 4x ) + ( -1 - 3 )
= -3x2 + 7x - 4
b) ( x - 1 )( x - 2 )( 1 + x + x2 )( 4 + 2x + x2 )
= [ ( x - 1 )( 1 + x + x2 ) ][ ( x - 2 )( 4 + 2x + x2 ) ]
= [ ( x - 1 )( x2 + x + 1 ) ][ ( x - 2 )( x2 + 2x + 4 ) ]
= ( x3 - 13 )( x3 - 23 )
= ( x3 - 1 )( x3 - 8 )
= x6 - 9x3 + 8
c) ( x - 1 )3 + 3( x - 1 )( x2 + x + 1 ) - 4x( x + 1 )( x - 1 )
= x3 - 3x2 + 3x - 1 + 3( x3 - 13 ) - 4x( x2 - 1 )
= x3 - 3x2 + 3x - 1 + 3x3 - 3 - 4x3 + 4x
= ( x3 + 3x3 - 4x3 ) - 3x2 + ( 3x + 4x ) + ( -1 - 3 )
= -3x2 + 7x - 4
a,\(\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)+3\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-3x^2+3x-1-4x\left(x^2-1\right)+3\left(x^3-1\right)\)
\(=x^3-3x^2+3x-1-4x^3+4x+3x^3-3\)
\(=-3x^2+7x-4\)
b,\(\left(x-1\right)\left(x-2\right)\left(1+x+x^2\right)\left(4+2x+x^2\right)\)
\(=\left[\left(x-1\right)\left(x^2+x+1\right)\right]\left[\left(x-2\right)\left(x^2+2x+4\right)\right]\)
\(=\left(x^3-1\right)\left(x^3-8\right)\)
\(=x^6-9x^3+8\)
c,\(\left(x-1\right)^3+3\left(x-1\right)\left(x^2+x+1\right)-4x\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1+3\left(x^3-1\right)-4\left(x^2-1\right)\)
\(=x^3-3x^2+3x-1+3x^3-3-4x^3+4x\)
\(=-3x^2+7x-4\)
a) ( x + 3 )2 - ( x - 4 )( x + 8 ) = 1
<=> x2 + 6x + 9 - ( x2 + 4x - 32 ) = 1
<=> x2 + 6x + 9 - x2 - 4x + 32 = 1
<=> 2x + 41 = 1
<=> 2x = -40
<=> x = -20
b) 3( x + 2 )2 + ( 2x - 1 )2 - 7( x + 3 )( x - 3 ) = 36
<=> 3( x2 + 4x + 4 ) + 4x2 - 4x + 1 - 7( x2 - 9 ) = 36
<=> 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63 = 36
<=> 8x + 76 = 36
<=> 8x = -40
<=> x = -5
c) ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 1
<=> x3 - 27 - x( x + 2 )( x - 2 ) = 1
<=> x3 - 27 - x( x2 - 4 ) = 1
<=> x3 - 27 - x3 + 4x = 1
<=> 4x - 27 = 1
<=> 4x = 28
<=> x = 7
a) \(2(x-1)\)2 + \((x + 3)\)2 = \(3(x-2)(x+1)\)
⇔\(2x^2-4x+2+x^2+6x+9=3x^2+3x-6x-6\)
⇔\(2x^2+x^2-3x^2-4x+6x-3x+6x=-2-9-6\)
⇔\(5x=-17\)
⇔\(x=\frac{-17}{5}\)
b: \(\Leftrightarrow x^2+4x+4-2x+6-x^2-2x-1=0\)
=>9=0(vô lý)
c: \(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+16x+32-22x-27\)
=>\(2x^2-6x+5-2x^2+6x-5=0\)
=>0x=0(luôn đúng)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
\(A=x^2-6x+10=x^2-2.3x+3^2+1=\left(x-3\right)^2+1\)
Ta có: \(\left(x-3\right)^2\ge0\) nên \(\left(x-3\right)^2+1\ge1\)
Vậy \(A_{min}=1\)(Dấu "="\(\Leftrightarrow x=3\))
a) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3+3x^2\right)=2\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3-3x^2=2\)
\(\Leftrightarrow3x+1=2\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\frac{1}{3}\)
a) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )
<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27
<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27
<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5
<=> 0x = 0 ( đúng ∀ x ∈ R )
Vậy phương trình có vô số nghiệm
b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2
<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1
<=> x2 + 2x - x2 - 2x = 1 - 4 - 6
<=> 0x = -9 ( vô lí )
Vậy phương trình vô nghiệm
c) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
a)
\(x^2-2x+1+x^2-4x+4=2\left(x^2+8x+16\right)-22x-27\)
\(2x^2-6x+5=2x^2+16x+32-22x-27\)
\(-6x+5=-6x+5\)
\(0=0\left(llđ\forall x\right)\)
Vậy \(x=R\)
b)
\(x^2+4x+4-2x+6=x^2+2x+1\)
\(x^2+2x+10=x^2+2x+1\)
\(10=1\)
\(0=-9\left(sai\right)\)
Vậy phương trình vô nghiệm
c)
\(x^3+3x^2+3x+1-x^3-3x^2=2\)
\(3x+1=2\)
\(3x=1\)
\(x=\frac{1}{3}\)