K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

1) Tìm số nguyên x, biết : 

a) 3x + 2 + 4 . 3x + 1 = 7.36

3x + 1 ( 3 + 4) = 7.36

3x + 1 .7 = 7.36

=> x + 1 = 6

=> x = 5

b) 4x + 3 - 3.4x + 1 = 13 . 411

4x + 1 ( 42 - 3) = 13 . 411

4x + 1 . 13 = 13 . 411

=> x + 1 = 11

=> x = 10

28 tháng 12 2018

 1: Tìm x, y nguyên tố thoả mãn

                         y2 – 2x2 = 1

Hướng dẫn:

Ta có y2 – 2x2 = 1 ⇒ y2   = 2x2 +1 ⇒ y là số lẻ

Đặt y = 2k + 1 (với k nguyên).Ta có (2k + 1)2 = 2x2 + 1

⇔ x2 = 2 k2 + 2k ⇒ x chẵn , mà x nguyên tố ⇒ x = 2, y = 3

28 tháng 12 2018

2: Tìm nghiệm nguyên dương của phương trình

                             (2x + 5y + 1)(2|x|   + y + x + x) = 105

 Hướng dẫn:

Ta có: (2x + 5y + 1)(2|x|  + y + x + x) = 105

Ta thấy 105 lẻ ⇒ 2x + 5y + 1 lẻ ⇒ 5y chẵn ⇒ y chẵn

2|x| + y + x + x = 2|x| + y + x(x+ 1) lẻ

có x(x+ 1) chẵn, y chẵn ⇒ 2|x|  lẻ ⇒ 2|x| = 1 ⇒ x = 0

Thay x = 0 vào  phương trình ta được

(5y + 1) ( y + 1) = 105 ⇔ 5y2 + 6y – 104 = 0

⇒ y = 4 hoặc y = \displaystyle -\frac{26}{5} ( loại)

Thử lại ta có x = 0; y = 4 là nghiệm của phương trình

1 tháng 1 2016

a)Đặt x^3+x^2=0

<=> x^2(x+1)=0

<=>x=0;x=-1

Vậy, nghiệm của đa thức x^3+x^2 là x=0;x=-1

b)Đặt x^3+x^2+x+1=0

<=> x^2(x+1)+(x+1)=0

<=>(x^2+1)(x+1)=0

<=>x^2=-1(vô lí vì x^2>0 với mọi x); x=-1

Vậy đa thức có nghiệm x=-1

 

21 tháng 4 2019

AI LÀM ĐẦU MK K CHO

22 tháng 3 2020

a) \(3\left(2x-1\right)+1=\left(-2\right)^2-3\left(-2\right)^3\)

\(\Leftrightarrow6x-3+1=4+24\)

\(\Leftrightarrow6x=4+24-1+3\)

\(\Leftrightarrow6x=30\)

\(\Leftrightarrow x=5\)

b) \(\left(x-2\right)\left(x+3\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2>0\\x+3>0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x>2\\x>-3\end{cases}}\)

c) \(x^2\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-9=0\\x+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\pm3\\x=-2\end{cases}}\)

24 tháng 7 2019

a, x : (-1/2)^3 = -1/2

=> x : (-1/8) = -1/2

=> x = 4

vậy_

b, (3/4)^5.x = (3/4)^7

=> x = (3/4)^7 : (3/4)^5

=> x = (3/4)^2

=> x = 9/16

vậy-

c, (3/5)^8 : x = (-3/5)^6

=> (3/5)^8 : x = (3/5)^6

=> x = (3/5)^8 : (3/5)^6

=> x = (3/5)^2

=> x= 9 /25

3 tháng 11 2018

vì \(x^2\ge0\Rightarrow\left(x^2-1\right)>\left(x^2-4\right)>\left(x^2-7\right)>\left(x^2>10\right)\)

để \(\left(x^2-1\right).\left(x^2-4\right).\left(x^2-7\right).\left(x^2-10\right)< 0\)

ta xét hai trường hợp

TH1: (x2-10) âm và (x2-1),(x2-4),(x2-7) dương.ta có

\(\Rightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 10\\x^2>7\end{cases}}\Rightarrow x^2=9\Rightarrow x=\left\{\pm3\right\}\)

TH2: (x2-1) dương và (x2-4),(x2-7),(x2-10) âm ta có

\(\Rightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Rightarrow x^2=\left\{\varnothing\right\}\Rightarrow x=\varnothing}\)

vậy x=+-3