Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 4x - x2 + 3
A = -x2 + 4x + 3
A = - (x2 - 4x - 3)
A = - (x - 2)2 + 7 lớn hơn hoặc bằng 7.
Dấu "=" xảy ra khi x - 2 = 0 => x = 2
Vậy...
\(A=4x-x^2+3=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
\(=-\left(x-2\right)^2+7\le7\)
Vậy \(A_{max}=7\Leftrightarrow x-2=0\Leftrightarrow x=2\)
\(B=x-x^2=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy \(B_{max}=\frac{1}{4}\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
a) Đặt tính đa thức chia đa thức ta được:
\(f\left(x\right):g\left(x\right)=\left(x^2+x\right)\).
b) Thương f(x) : g(x) =0
<=> \(x^2+x=0\)
<=> x ( x + 1 ) = 0
<=> x =0 hoặc x+1 =0
<=> x=0 hoặc x=-1.
c)
Ta có: \(f\left(x\right):g\left(x\right)=\left(x^2+x\right)=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\).
Gía trị nhỏ nhất là -1/4 đạt tại x = -1/2.
( Cảm ơn em đã giúp đỡ các bạn khác :)
Đây là 1 bài trong 1 đề t làm nộp gửi thầy nên t đưa ảnh nha,tại lúc đó đề sai nên trong bài giải có vài chữ ko liên quan
Làm tiếp \(M\ge-3\)
\(\frac{x+1}{2x}\ge-3\)
\(\frac{1}{2}+\frac{1}{2x}\ge-3\)
Đến đây dễ r
\(3x\left(x-5\right)-x\left(4+3x\right)=43\)
\(\Leftrightarrow3x^2-15x-4x-3x^2=43\)
\(\Leftrightarrow-19x=43\)
\(\Leftrightarrow x=\frac{-43}{19}\)
\(ĐKXĐ:x\ne0;x\ne2\)
\(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2\left(x^3-2x^2\right)\)
\(\Leftrightarrow4x^2-4x^3+x^4=-2x^3+4x^2\)
\(\Leftrightarrow x^4-2x^3=0\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\left(ktm\right)\)
Vậy không có x để phân thức bằng -2
Ta có : \(\frac{4x^2-4x^3+x^4}{x^3-2x^2}=-2\)
( ĐKXĐ : \(x\ne0,x\ne\pm\sqrt{2}\) )
\(\Leftrightarrow\frac{4x^2-4x^3+x^4}{x^3-2x^2}+2=0\)
\(\Leftrightarrow4x^2-4x^3+x^4+2\left(x^3-2x^2\right)=0\)
\(\Leftrightarrow-2x^3+x^4=0\)
\(\Leftrightarrow x^3\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\) ( Loại \(x=0\) không thỏa mãn ĐKXĐ )
Vậy : \(x=2\) thỏa mãn đề.