K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2015

\(x\ne-\frac{2}{5};x\ne-\frac{1}{5}\)

\(\Rightarrow\left(2x+3\right)\left(10x+2\right)=\left(4x+5\right)\left(5x+2\right)\)

\(\Rightarrow20x^2+4x+30x+6=20x^2+8x+25x+10\)

\(\Rightarrow34x-33x=10-6\)

\(\Rightarrow x=4\)

27 tháng 9 2019

a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)

=> 2x + 7 = 4 

     2x        = 4 - 7 

     2x        = -3

       x        = -3 : 2

       x         = -1,5

   Vậy x = -1,5

15 tháng 7 2015

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2.\left(2x+3\right)-\left(4x+5\right)}{2.\left(5x+2\right)-\left(10x+2\right)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)

suy ra:

\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow\left(2x+3\right).2=\left(5x+2\right).1\)

\(4x+6=5x+2\)

\(4x-5x=2-6\)

\(-x=-4\)

\(x=4\)

24 tháng 6 2017

x=4 bạn nhé

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

30 tháng 11 2018

a) ta có:

 \(|2x-6|+5x=9\Leftrightarrow|2x-6|=9-5x\)

\(2x-6=9-5x\Leftrightarrow7x=15\Leftrightarrow x=\frac{15}{7}\)

\(2x-6=5x-9\Leftrightarrow3x=3\Leftrightarrow x=1\)

b) Ta có:

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+329}{5}+4=0\)

\(\Leftrightarrow\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

do \(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\ne0\)nên \(x+329=0\Leftrightarrow x=-329\)

Vậy ............................................. chúc bn hok tốt ^-^

ko ai rảnh để trả lời đâu

1 tháng 5 2019

\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)

\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)

\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)

\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)

\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)

11 tháng 10 2020

a) Đặt \(\frac{x}{-2}=\frac{y}{-3}=k\Rightarrow\hept{\begin{cases}x=-2k\\y=-3k\end{cases}}\)

Khi đó 4x - 3y = 9

<=> -8k + 9k = 9

=> k = 9

=> x = -18 ; y = -27

b) Ta có : \(2x=3y\Rightarrow\frac{2x}{6}=\frac{3y}{6}\Rightarrow\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)

=> x = 4 ; y = 6 

c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

Khi đó (3k)2 + (4k)2 = 100

<=> 9k2 + 16k2 = 100

=> 25k2 = 100

=> k2 = 4

=> k = \(\pm\)2

Khi k = 2 => x = 6 ; y = 8

Khi k = -2 =>  x = -6 ; y = -8

Vậy các cặp (x;y) thỏa mãn cần tìm là (6;8);(-6;-8)

d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)

Khi đó x3 + y3 = 91 

<=> (3k)3 + (4k)3 = 91

=> 27k3 + 64k3 = 91

=> 91k3 = 91

=> k3 = 1

=> k = 1

=> x = 3 ; y = 4

e) Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\) 

Khi đó x2y = 100

<=> (5k)2.4k = 100

=> 25k2.4k = 100

=> 100k3 = 100

=> k = 1

=> x = 5 ; y = 4

22 tháng 3 2019

Đặt \(\frac{x}{3}=\frac{y}{5}=k\)=> \(x=3k\) ; \(y=5k\)

Khi đó, ta có: C = \(\frac{5.\left(3k\right)^2+3.\left(5k\right)^2}{10.\left(3k\right)^2-3.\left(5k\right)^2}\)

                          = \(\frac{5.3^2.k^2+3.5^2.k^2}{10.3^2.k^2-3.5^2.k^2}\)

                          = \(\frac{k^2.\left(5.9+3.25\right)}{k^2.\left(10.9-3.25\right)}\)

                          =  8

\(\frac{x}{3}=\frac{y}{5}\Rightarrow5x=3y\)

\(C=\frac{3xy+5xy}{6xy-5xy}=\frac{8xy}{1xy}=8\)

cách này nhanh hơn không :v