Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(-2x=5y\Rightarrow\frac{x}{5}=\frac{y}{-2}\) và \(x+y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5+\left(-2\right)}=\frac{30}{3}=10\)
\(\Rightarrow x=10\times5=50\) \(y=10.\left(-2\right)=-20\)
b) Mình quy ra luôn cái đầu nhé
\(\left(x^2-1\right)^2+0,5=4,5\Rightarrow\left(x^2-1\right)^2=4,5-0,5=4=2^2\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=2\\x^2-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=2+1=3\\x^2=\left(-2\right)+1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=-\sqrt{1}\end{cases}}}\)
Vậy \(x\in\left\{\sqrt{3};-\sqrt{1}\right\}\)
không chép lại đề bài
a) -2x=5y\(\Leftrightarrow\)\(\frac{x}{y}\)=\(\frac{-2}{5}\)=\(\frac{x}{5}\)=\(\frac{y}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}\)+\(\frac{y}{-2}\)=\(\frac{x+y}{5+\left(-2\right)}\)=\(\frac{30}{3}\)=10
Do đó:
\(\frac{x}{5}\)=10\(\Rightarrow\)x=10.5=50
\(\frac{y}{-2}\)=10\(\Rightarrow\)y=10.(-2)=-20
Vậy x=50, y=-20
a) I 5x+4I +7=26 b) 3 I 9-2xI - 17=16
I 5x+4 I = 26-7 3 I 9-2xI=16+17
I 5x+4 I =19 3 I 9-2xI=33
=> 5x+4=19 hoặc 5x+4=-19 I 9-2xI=33:3=11
5x = 19-4=15 hoặc 5x=-19-4=-23 => 9-2x=11 hoặc 9-2x=-11
-2x=11-9=2 hoặc -2x=-11+9=-2
x=2:(-2)=-1 hoặc x=-2:(-2)=1
a) \(\left|5x+4\right|+7=26\)
\(\Rightarrow\left|5x+4\right|=26-7\)
\(\Rightarrow\left|5x+4\right|=19\)
\(\Rightarrow\orbr{\begin{cases}5x+4=19\\5x+4=-19\end{cases}\Rightarrow\orbr{\begin{cases}5x=19-4\\5x=-19-4\end{cases}\Rightarrow}\orbr{\begin{cases}5x=15\\5x=-23\end{cases}\Rightarrow}\orbr{\begin{cases}x=15:5\\x=-23:5\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=-4,6\end{cases}}}\)
Vậy \(x\in\left\{3;-4,6\right\}\)
b) \(3\left|9-2x\right|-17=16\)
\(\Rightarrow3\left|9-2x\right|=16+17\)
\(\Rightarrow3\left|9-2x\right|=23\)
\(\Rightarrow\left|9-2x\right|=23:3\)
\(\Rightarrow\left|9-2x\right|=\frac{23}{3}\)
\(\Rightarrow\orbr{\begin{cases}9-2x=\frac{23}{3}\\9-2x=-\frac{23}{3}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{23}{3}+9\\2x=-\frac{23}{3}+9\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{23}{3}+\frac{27}{3}\\2x=-\frac{23}{3}+\frac{27}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}2x=\frac{50}{3}\\2x=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{50}{3}:3\\x=4:2\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{50}{3}\times\frac{1}{3}\\x=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{50}{9}\\x=2\end{cases}}}\)
Vậy \(x\in\left\{\frac{50}{9};4\right\}\)
Chúc bạn học tốt!
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
P = x3 - 6x2 + 12x -8 + 6(x2 - 2x + 1 ) - (x3 + 1 )
= x3 - 6x2 + 12x -8 + 6x2 - 12x + 6 - x3 - 1
= -3
\(\Rightarrow\)P ko phụ thuộc vào giá trị của x
#mã mã#
Vì 0 nhân với số nào cũng bằng 0 nên
Nếu x=0 thì ta có
0×(-3×0^2-0-2)=0
Vậy x sẽ bằng 0
Đa thức vế trái bằng 0 khi một trong hai thừa số "=" 0
Suy ra \(\orbr{\begin{cases}x=0\\-3x^2-x-2=0\left(1\right)\end{cases}}\)
Giải (1): Chia cả hai vế cho -1:\(3x^2+x+2=0\)
Ta có: \(3x^2+x+2=3\left(x^2+2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=3\left[\left(x+\frac{1}{6}\right)^2+\frac{23}{36}\right]=3\left(x+\frac{1}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}>0\forall x\)
Do đó (1) vô nghiệm.
Vậy x = 0
a) \(\left(x-\frac{2}{5}\right).\left(x+\frac{3}{7}\right)<0\)
\(\Rightarrow x-\frac{2}{5}<0\) hoặc \(x-\frac{2}{5}>0\)
\(x+\frac{3}{7}>0\) \(x+\frac{3}{7}<0\)
\(\Rightarrow x<\frac{2}{5}\) hoặc \(x>\frac{2}{5}\)
\(x>-\frac{3}{7}\) \(x<-\frac{3}{7}\)
\(\Rightarrow-\frac{3}{7} hoặc \(x\in rỗng\)
vậy \(-\frac{3}{7}
b) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)\le x\le\frac{1}{24}-\left(\frac{1}{8}-\frac{1}{3}\right)\)
\(\frac{-1}{12}\le x\le\frac{1}{4}\)
\(\frac{-1}{12}\le x\le\frac{3}{12}\)
\(\Rightarrow x=\frac{-1}{12};0;\frac{1}{12};\frac{2}{12};\frac{3}{12}\)
a) x ( x - 1 ) < 0
\(\Rightarrow\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 0\\x>1\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> \(\hept{\begin{cases}x>0\\x< 1\end{cases}}\)
=> 0 < x < 1
Vậy 0 < x < 1
b) Lát nghĩ ^^
b) k chắc lắm ( tình bày theo ý hiểu thoii nha )
\(\frac{x^2\left(x-3\right)}{x-9}\le0\)
\(\Rightarrow\) x2 ( x - 3 ) = 0 hoặc \(\hept{\begin{cases}x^2\left(x-3\right)< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x^2\left(x-3\right)>0\\x-9< 0\end{cases}}\)
Mà \(x^2\ge0\forall x\)
\(\Rightarrow\) x - 3 = 0 hoặc \(\hept{\begin{cases}x-3< 0\\x-9>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3>0\\x-9< 0\end{cases}}\)
\(\Rightarrow\) x = 3 hoặc \(\hept{\begin{cases}x< 3\\x>9\end{cases}}\) ( vô lí ) hoặc \(\hept{\begin{cases}x>3\\x< 9\end{cases}}\)
\(\Rightarrow3\le x< 9\)
Vậy \(3\le x< 9\)
@@ Học tốt
Chiyuki Fujito
bạn ơi tải ứng dung VN ngày nay kiếm tiền giúp bố mẹ nhé
Xong rồi ấn cá nhân góc bên phải nhé ae
Rồi ấn vào Nhập mã giới thiệu nhé
Ấn mã 8AQCV nhé các bạn
chăm chỉ giàu to ae ạ
ok nhé
mã 8AQCV
Ta có:
\(\left|2x-1\right|=2x-1\Leftrightarrow2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\frac{1}{2}\)
\(\left|2x-1\right|=1-2x\Leftrightarrow2x-1< 0\Leftrightarrow2x< 1\Leftrightarrow x< \frac{1}{2}\)
Với \(x\ge\frac{1}{2}\) ta được:
\(\left(2x-1\right)-x=4\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\left(TMĐKXĐ\right)\)
Với \(x< \frac{1}{2}\) ta được:
\(\left(1-2x\right)-x=4\)
\(\Rightarrow1-3x=4\)
\(\Rightarrow1-4=3x\)
\(\Rightarrow x=-1\left(TMĐKXĐ\right)\)
Vậy \(x=-1;x=5\)