K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

20 tháng 6 2024

A)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9

x/1=9 =>x=9.1=9

y/2=9=>y=9.2=18

z/3=9=>z=9.3=27

B)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

C)Dựa vào tính chất của dãy tỉ số bằng nhau:

x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2

x/3=2=>x=2.3=6

y/8=2=>y=2.8=16

z/5=2=>z=2.5=10

31 tháng 7 2020

a) Ta có 3x = 2y = z 

=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)

=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)

b) 6x = 10y = 15z 

=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)

=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)

=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)

c) 6x = 4y = 2z

=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)

=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)

d) x = 3y = 2z

=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)

=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)

=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)

=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

11 tháng 1 2019

Câu hỏi của Phú Hồ Kim - Toán lớp 7 - Học toán với OnlineMath

Tham khảo ơ link này nhé!

8 tháng 11 2018

TH1: a+b+c  khác 0

\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)

\(\Rightarrow2+\frac{a+b-c}{c}=2+\frac{b+c-a}{a}=2+\frac{c+a-b}{b}\)

\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

\(\Rightarrow a=b=c\)

thay a=b=c vào B ta có:

\(B=\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)\cdot\left(1+\frac{a}{a}\right)=2\cdot2\cdot2=8\)

TH2: a+b+c=0

=> c=-a-b

=>a=-b-c

=>b=-a-c

thay a,b,c vào B ta có:

\(B=\left(1+\frac{-\left(a+c\right)}{a}\right)\cdot\left(1+\frac{-\left(b+c\right)}{c}\right)\cdot\left(1+\frac{-\left(a+b\right)}{b}\right)\)

\(B=\left(-\frac{c}{a}\right)\cdot\left(-\frac{b}{c}\right)\cdot\left(-\frac{a}{b}\right)=-1\)

p/s: th2 ko chắc nhá 

27 tháng 12 2018

minh

ko

bt

3 tháng 2 2019

  A = 2 - 5 + 8 - .... - 101 ( 34 số hạng ) 
A = ( 2 - 5 ) + ( 8 - 11 ) + ( 14 -17 ) + .... + ( 98 - 101 ) ( 17 nhóm ) 
A = - 3 - 3 - ... - 3 ( 17 số hạng ) 
A = -3.17 = -51