Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
\(\left(2x-3\right)^2=25\)
\(\Rightarrow\left(2x-3\right)^2=5^2\)
\(\Rightarrow2x-3=5\)
\(\Rightarrow2x=5+3\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
Bài 1
A = \(\frac{3}{7}.\left(\frac{3}{7}\right)^{19}\)= \(\left(\frac{3}{7}\right)^{20}\)
B = \(\left[\left(-\frac{3}{7}\right)^5\right]^4\)= \(\left(-\frac{3}{7}\right)^{20}\)
Bài 2
a. (2x - 3)2 = 25
<=> \(\orbr{\begin{cases}2x-3=5\\2x-3=-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
Vậy ...
b. \(\frac{27}{3^x}\)= 3
<=> 27 = 31+x
<=> 33 = 31+x
<=> 3 = 1 + x
<=> x = 2
bữa nay thi vong trường mình đã làm bài đó rồi bằng-7 chắc 100 phầm trăm
Ta có: \(\left(x+3\right)^2+\left(x^2-9\right)^2=0\)
vì: (x + 3)2 \(\ge\)0; (x2 - 9)2 \(\ge\)0
=> \(\hept{\begin{cases}x+3=0\\x^2-9=0\end{cases}}\) => \(\hept{\begin{cases}x=-3\\x^2=9\end{cases}}\)
=> \(\hept{\begin{cases}x=-3\\x=\pm3\end{cases}}\) => \(x=-3\)
=> -3 là nghiệm cảu đa thức (x + 3)2 + (x2 - 9)2
Trả lời:
( x + 3 )2 + ( x2 - 9 )2 = 0
<=> [ ( x + 3 ) - ( x2 - 9 ) ] [ ( x + 3 ) + ( x2 - 9 ) ] = 0
<=> [ ( x + 3 ) - ( x - 3 ) ( x + 3 ) ] [ ( x + 3 ) + ( x - 3 ) ( x + 3 ) ] = 0
<=> [ ( x + 3 ) ( 1 - x + 3 ) ] [ ( x + 3 ) ( 1 + x - 3 ) ] = 0
<=> ( x + 3 ) ( 1 - x + 3 ) ( x + 3 ) ( 1 + x - 3 ) = 0
<=> ( x + 3 )2 ( 4 - x ) ( x - 2 ) = 0
<=> ( x + 3 )2 = 0 hoặc 4 - x = 0 hoặc x - 2 = 0
<=> x = - 3 hoặc x = 4 hoặc x = 2
Vậy x = - 3; x = 4; x = 2
\(A=-\left(x^2-2x+1\right)-2\)
\(A=-\left(x-1\right)^2-2\)
Vì \(-\left(x-1\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x-1\right)^2-2\le0-2;\forall x\)
Hay \(A\le-2;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Vậy MAX A=-2 \(\Leftrightarrow x=1\)
\(C=-2x^2+2xy-y^2+2x+4\)
\(C=-x^2+2xy-y^2-x^2+2x-1+5\)
\(C=-\left(x^2-2xy+y^2\right)-\left(x^2-2x+1\right)+5\)
\(C=-\left(x-y\right)^2-\left(x-1\right)^2+5\le5\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}x-y=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\x=1\end{cases}}\Leftrightarrow x=y=1\)
Vậy C max = 5 tại x = y = 1
a) \(\frac{2x-3}{4-x}=\frac{4-x}{2x-3}\)
\(\left(2x-3\right)\left(2x-3\right)=\left(4-x\right)\left(4-x\right)\)
\(\left(2x-3\right)^2=\left(4-x\right)^2\)
\(4x^2-12x+9=16-8x+x^2\)
\(4x^2-12x+9-16+8x-x^2=0\)
\(3x^2-4x-7=0\)
\(3x^2+3x-7x-7=0\)
\(3x\left(x+1\right)-7\left(x+1\right)=0\)
\(\left(x+1\right)\left(3x-7\right)=0\)
\(\hept{\begin{cases}x+1=0\\3x-7=0\end{cases}}\)
\(\hept{\begin{cases}x=-1\\x=\frac{7}{3}\end{cases}}\)
\(\left(2x-3\right)^2=\left(x+7\right)^2\)
<=> \(2x-3=x+7\)
<=> \(x=10\)
Vậy \(x=10\)
\(\left(2x-3\right)^2=\left(x+7\right)^2\)
\(\Leftrightarrow\left|2x-3\right|=\left|x+7\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=x+7\\2x-3=-7-x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=10\\x=\frac{-4}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{-4}{3};10\right\}\)