K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

Hình như là đề bài thiếu rồi ạ. Nếu chỉ cho đk như vậy thì sao tìm đc n ạ???

15 tháng 10 2019

Dạ .. Sửa đề rồi nhé :33

2 tháng 12 2016

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=> a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

2 tháng 12 2016

Cảm ơn bạn nha ! @Phùng Khánh Linh

4 tháng 11 2019

Bài này có mỗi cách đồng dư là nhanh nhất r bạn

30 tháng 1 2020

Câu 1 .

A = 13 + 23 + 33 + ... + 1003 

   = 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100

   = ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )

   = ( 1 + 2 + 3 + .... + 100 )3

Do đó A \(⋮\)1 + 2 + 3 + ... + 100

Câu 2 : 

+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)

Do đó 2100  có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751             ( 1) 

+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)

Do đó 2100 có 3 chữ số tận cùng chia hết cho 8            ( 2)

Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376 

Mà \(376\equiv1\left(mod125\right)\)

=> 2100 chia 125 dư 1

Vậy 2100 chia 125 có số dư là 1

Hok tốt

# owe

30 tháng 1 2020

Câu 1 hình như sai phải ko bạn, sao từ phép nhân sang phép cộng dễ thế?

13 tháng 2 2020

1 bài toán con nít hình như em này mới học lớp 8 mà nhỉ anh chắc chắc 100% lớp 8 nâng cao

14 tháng 2 2020

thế a học lớp mấy

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

1 tháng 7 2019

\(2,n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ \(\Rightarrow\)n có dạng \(2k+1\), thay vào ta có :

\(\Rightarrow\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right).2k.\left(2k+2\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì \(k\left(k+1\right)\left(k+2\right)\)là 3 số tự nhiên liên tiếp

 \(\Rightarrow k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(6\)

\(\Leftrightarrow8k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(48\)

\(\Rightarrow n^3+3n^2-n-3\)\(⋮\)\(48\)\(\left(đpcm\right)\)

3 tháng 7 2019

Đề câu 1  bài đầu tiên sai rồi em. VD như n=3 lẻ thì n^2+4n+8 =29 không chia hết cho 8

Đề bài đúng: \(n^2+4n+3\) chia hết cho 8 với mọi n lẻ

Chứng minh: 

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)

Vì n lẻ nên : n=2k+1, k thuộc N

Ta có: \(n^2+4n+3=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

Vì (k+1) và (k+2) là hai số tự nhiên liên tiếp nên tích của nó sẽ chia hết cho 2

=> 4 (k+1)(k+2) chia hết cho 8

nên \(n^2+4n+3\)chia hết cho 8 với n là số tự nhiên lẻ.