Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.2^x+2^{x+3}=144\)
\(2^x+2^x.2^3=144\)
\(2^x+2^x.8=144\)
\(2^x.\left(1+8\right)=144\)
\(2^x.9=144\)
\(2^x=144:9\)
\(2^x=16\)
\(2^x=2^4\)
\(\Rightarrow x=4\)
Vậy \(x=4\)
\(b.\left(4.x-1\right)^2=25.9\)
\(\left(4.x-1\right)^2=225^2\)
\(4.x-1=225\)
\(4.x=225+1\)
\(4.x=226\)
\(x=226:4\)
\(x=\frac{226}{4}=\frac{113}{2}\)
Vậy \(x=\frac{113}{2}\)
2x + 2x+3 = 144
<=> 2x + 2x.23 = 144
<=> 2x( 1 + 23 ) = 144
<=> 2x.9 = 144
<=> 2x = 16
<=> 2x = 24
<=> x = 4
( 4x - 1 )2 = 25 . 9
<=> ( 4x - 1 )2 = 52 . 32
<=> ( 4x - 1 )2 = ( 5 . 3 )2
<=> ( 4x - 1 )2 = 152 = (-15)2
<=> \(\hept{\begin{cases}4x-1=15\\4x-1=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\x=-\frac{7}{2}\end{cases}}\)
2x + 2x+3 = 144
\(\Rightarrow\)2x + 2x . 8 = 144
\(\Rightarrow\)2x . ( 8 + 1 ) = 144
\(\Rightarrow\)2x . 9 = 144
\(\Rightarrow\)2x = 16
\(\Rightarrow\)2x = 24
\(\Rightarrow\)x = 4
( 4x - 1 ) 2 = 25 . 9
\(\Rightarrow\)(4x - 1 )2 = 52 . 32
\(\Rightarrow\)(4x - 1 ) 2 = 152
\(\Rightarrow\)4x - 1 = 15
\(\Rightarrow\)4x = 16
\(\Rightarrow\)x = 4
Bài 1 :
\(2^x.8=512\)
\(2^x=512:8\)
\(2^x=64\)
\(2^x=2^6\)
\(\Rightarrow x=6\)
\(b,\left(2x+1\right)^3=125\)
\(\left(2x+1\right)^3=5^3\)
\(\Rightarrow2x+1=5\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
\(c,x^{20}=x\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(d,\left(x-3\right)^{10}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(\left(4x+5\right):3-121:11=4\)
\(\Leftrightarrow\left(\dfrac{4x}{3}+\dfrac{5}{3}\right)-11=4\)
\(\Leftrightarrow\dfrac{4x}{3}+\dfrac{5}{3}-11=4\)
\(\Leftrightarrow\dfrac{4x}{3}+\dfrac{5}{3}-\dfrac{33}{3}=4\)
\(\Leftrightarrow\dfrac{4x}{3}+\dfrac{5-33}{3}=4\)
\(\Leftrightarrow\dfrac{4x}{3}-\dfrac{28}{3}=4\)
\(\Leftrightarrow\dfrac{4x}{3}=4+\dfrac{28}{3}\)
\(\Leftrightarrow\dfrac{4x}{3}=\dfrac{12}{3}+\dfrac{28}{3}\)
\(\Leftrightarrow\dfrac{4x}{3}=\dfrac{12+28}{3}\)
\(\Leftrightarrow\dfrac{4x}{3}=\dfrac{40}{3}\)
\(\Leftrightarrow4x=\dfrac{40}{3}.3\)
\(\Leftrightarrow4x=40\)
\(\Leftrightarrow x=\dfrac{40}{4}=10\)
Vậy \(x=10\)
c) ( 2x + 1 )3 =125
=> (2x+1)3=53
=> 2x+1=5
=> 2x=4
=> x=2
vậy x=2
a. 22x - 3 = 29
<=> 2x - 3 = 9
<=> x = 6
b.24 - x = 210
<=> 4 - x = 10
<=> x = -6
c. 3x = 19/3
<=> Tự tính
d. 2x - 3 = 2-11
<=> 2x = \(\frac{6145}{2048}\)
<=> Tự tính
a) (4x - 1)2 = 25.9
=> (4x - 1)2 = 52 . 32 = 152
=> 4x - 1 = 15
=> 4x = 16
=> x = 4
b) 2x + 2x+3 = 144
=> 2x + 2x . 23 = 144
=> 2x (1 + 23) = 144
=> 2x . 9 = 144
=> 2x = 16
=> x = 4
c) đề chắc chắn đúng chứ :v
d) (2x + 1)3 - 12 = 15
=> (2x + 1)3 = 27
=> (2x + 1)3 = 33
=> 2x + 1 = 3 => 2x = 2 => x = 1
2. 2x = 16 => 2x = 24 => x = 4
3x = 81 => 3x = 34 => x = 4
x3 = 64 => x3 = 43 => x = 4
x2 =81 => x2 = 92 => x = 9
a) \(\left(x-6\right)^3=\left(x-6\right)^2\Leftrightarrow\orbr{\begin{cases}x-6=1\Leftrightarrow x=7\\x-6=0\Leftrightarrow x=6\end{cases}}\)
b) \(\left(7.x-11\right)^3=2^5.5^2+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=800+200\)
\(\Leftrightarrow\left(7.x-11\right)^3=1000\)
\(\Leftrightarrow\left(7.x-11\right)^3=10^3\)
\(\Leftrightarrow7x-11=10\Leftrightarrow7x=21\Leftrightarrow x=3\)
c) \(3+2^{x-1}=24-\left[4^2-\left(2^2-1\right)\right]\)
\(\Leftrightarrow3+2^{x-1}=24-\left[4^2-3\right]\)
\(\Leftrightarrow3+2^{x-1}=24-13\)
\(\Leftrightarrow3+2^{x-1}=11\)
\(\Leftrightarrow2^{x-1}=8\Leftrightarrow2^{x-1}=2^3\Leftrightarrow x-1=3\Leftrightarrow x=4\)
a)\(3^x.3=243\Leftrightarrow3^x=81\Leftrightarrow3^x=3^4\Leftrightarrow x=4\)
b) \(2^x.16^2=1024\Leftrightarrow2^x.256=1024\Leftrightarrow2^x=4\Leftrightarrow2^x=2^2\Leftrightarrow x=2\)
c) \(64:4^x=16^8\Leftrightarrow4^x=67108864\Leftrightarrow4^x=4^{13}\Leftrightarrow x=13\)
d) \(2^x=16\Leftrightarrow2^x=2^4\Leftrightarrow x=4\)
\(a,\Rightarrow\left(4x-1\right)^2=25=5^2=\left(-5\right)^2\\ \Rightarrow\left[{}\begin{matrix}4x-1=5\\4x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\\ b,\Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:9=16=2^4\Rightarrow x=4\\ c,\Rightarrow3^{2x+3}=3^{2\left(x+3\right)}\\ \Rightarrow2x+3=2x+6\Rightarrow0x=3\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)