K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2021

\(4n+3;2n+3=d\left(d\inℕ^∗\right)\)

\(4n+3⋮d\)

\(2n+3⋮d\Rightarrow4n+6⋮d\)

Suy ra : \(4n+3-4n-6⋮d\Rightarrow-3⋮d\)

Vay ta co dpcm

14 tháng 1 2021

c,Đặt  \(9n+24;3n+4=d\left(d\inℕ^∗\right)\)

\(9n+24⋮d\)

\(3n+4\Rightarrow9n+12⋮d\)

Suy ra : \(9n+24-9n-12⋮d\Rightarrow12⋮d\)

Do 12 có 2 nghiệm trở lên nên đây ko phải là 2 số nguyên tố cùng nhau 

10 tháng 2 2019

a) gọi ƯC ( 2n + 1 ; 3n +1 ) = d

      + 2n+1 chia hết cho d => 3(2n +1) chia hết cho d    

        hay 6n +2 chia hết cho d   (1)

      + 3n + 1 chia hết cho d => 2(3N +1 ) chia hết cho d 

hay 6n +2 chia hết cho d   (2)

từ (1) và (2)   => ( 6n + 3 - 6n - 2 ) chia hết cho d

=> 1 chia hết cho d 

=> d là ước của 1 

=> d thuộc tập hợp 1 ; -1 

=> ƯC( 3n +1 ; 2n +1 ) = 1 ; -1

=> chúng nto cùng nhau

10 tháng 2 2019

b) Gọi d > 0 là ước số chung của 7n+10 và 5n+7

=> d là ước số của 5.(7n+10) = 35n +50

và d là ước số của 7(5n+7)= 35n +49

mà (35n + 50) -(35n +49) =1

=> d là ước số của 1 => d = 1

=> đpcm

23 tháng 8 2021

tui ko biết

23 tháng 8 2021

a) Gọi ƯCLN (n + 2; n + 3) = d.

Ta thấy (n + 3) chia hết cho d; (n+2) chia hết cho d=>[(n + 3)- (n + 2)] chia hết cho d =>l chia hết cho d

Nên d = 1. Do đó n + 3 và n + 2 là hai số nguyên tố cùng nhau.

tạm làm phần a cho còn lại đang nghĩ

10 tháng 2 2021

a, \(\Leftrightarrow x;y-3\in\text{Ư}\left(12\right)=\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\)

xét bảng

đóng ngoặc nhọn nhá, mãy mình lỗi :<

b, tương tự 

DD
4 tháng 12 2021

a) \(M=1+3+3^2+3^3+...+3^{119}\)

\(3M=3+3^2+3^3+3^4+...+3^{119}+3^{120}\)

\(3M-M=\left(3+3^2+3^3+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)

\(2M=3^{120}-1\)

\(M=\frac{3^{120}-1}{2}\)

b) \(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{117}\right)\)chia hết cho \(13\).

\(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)

\(=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)

\(=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)

\(=40\left(1+3^4+...+3^{116}\right)\)chia hết cho \(5\).

12 tháng 5 2022

cảm ơn cô ạ

4 tháng 1 2018

a, n = 0

b, n = 0

c, n = 3

d, n = 2

4 tháng 1 2018

n=0;n=0;n=3;n=2

27 tháng 11 2018

Gọi số học sinh lớp 6C là x ( x \(\in\)N * ; 35 < x < 60 )

Theo bài số học sinh đó khi xếp hàng 2 ; hàng 3 ; hàng 4 ; hàng 8 đều vừa đủ

=> a chia hết cho 2 ; 3 ; 4 ; 8 

=> a \(\in\)BC ( 2 ; 3 ; 4 ; 8 )

Mà BCNN ( 2 ; 3 ; 4 ; 8 ) = 24 

=> BC ( 2 ; 3 ; 4 ; 78 ) = B ( 24 ) = { 0 ; 24 ; 48 ; 72 ; ....}

=> a = { 0 ; 24 ; 48 ; 72 ; ....}

Mà 35 < a < 60

=> a = 48

Vậy lớp 6C có 48 học sinh

27 tháng 11 2018

Bài này chỉ cần tìm BC(2,3,4,8) Rồi tìm số khoảng từ 35 đến 60 la được . Dễ mà

9 tháng 11 2023

a,tim n \(\in\) N; 4n + 3 và 2n + 3 nguyên tố cùng nhau

    Gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d ta có:

             \(\left\{{}\begin{matrix}4n+3⋮d\\2n+3⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}4n+3⋮d\\\left(2n+3\right).2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}4n+3⋮d\\4n+6⋮d\end{matrix}\right.\)

     ⇒  4n + 6 - (4n + 3) ⋮ d  ⇒ 4n + 6 - 4n - 3 ⋮ d ⇒ 3 ⋮ d

     ⇒ d = 1; 3

Để 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau thì 

        2n + 3 không chia hết cho 3

        2n không chia hết cho 3

        n = 3k + 1; hoặc n = 3k + 2 (k \(\in\) N)