Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x+42=33
=> 3x=33-42
=> 3x=-9
=> x= -3
b, 2x-13=27
=> 2x=27+13
=> 2x=40
=> x=20
c, 2/x-5/=18
=> /x-5/=18:2
=>/x-5/=9
=> x-5=9 hoặc x-5= -9
=> x=14 hoặc x= -4
b)
\(3\left(2x^2-7\right)=33\)
\(\Leftrightarrow2x^2-7=11\)
\(\Leftrightarrow2x^2=18\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
a) -2(2x - 8) + 3(4 - 2x) = -72 - 5(3x - 7)
=> -4x + 16 + 12 - 6x = -72 - 15x + 35
=> -10x + 28 = -37 - 15x
=> -10x + 15x = -37 - 28
=> 5x = -65
=> x = -65 : 5
=> x = -13
b) 3(2x2 - 7) = 33
=> 2x2 - 7 = 33 : 3
=> 2x2 - 7 = 11
=> 2x2 = 11 + 7
=> 2x2 = 18
=> x2 = 18 : 2
=> x2 = 9
=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy ...
a) ( 4x - 2 )x + 5 = 0
=> \(\hept{\begin{cases}4x-2=0\\x+5=0\end{cases}}\)
+ TH1 : 4x - 2 = 0
4x = 2
x = 0,5 ( vô lí nếu x c Z )
+ TH2 : x + 5 = 0
x = -5
=> x c \(\hept{ }\)0,5 ; -5 ( đóng ngoặc nhọn )
b) 2x - 9 = -8 -9
2x - 9 = -17
2x = -8
x = -4
c) 5( 3x + 8 ) - 7 . ( 2x + 3 ) = 16
15x + 40 - ( 14x + 21 ) = 16
15x + 40 - 14x - 24 = 16
( 15x -14x ) + (40 - 24 ) = 16
x + 16 = 16
x = 0
Xin lỗi phần c mk hơi sai sót !!! Mk sẽ làm lại phần c :
c) 5( 3x + 8 ) - 7( 2x + 3 ) = 16
15x + 40 - ( 14x + 21 ) = 16
15x + 40 - 14x - 21 = 16
( 15x - 14x ) + ( 40 - 21 ) = 16
x + 19 = 16
=> x = -3
a) Để \(-1:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-1\right)\in\left\{\pm1\right\}\)
Vậy \(x\in\left\{-1;1\right\}\)
b) Để \(1:x+1\)là số nguyên
\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x+1=1\)\(\Leftrightarrow\)\(x=1-1=0 \left(TM\right)\)
+ \(x+1=-1\)\(\Leftrightarrow\)\(x=-1-1=-2\left(TM\right)\)
Vậy \(x\in\left\{-2; 0\right\}\)
c) Để \(-2:x\)là số nguyên
\(\Rightarrow\)\(x\inƯ\left(-2\right)\in\left\{\pm1;\pm2\right\}\)
Vậy \(x\in\left\{-1;-2;1;2\right\}\)
d) Để \(3:x-2\)là số nguyên
\(\Rightarrow\)\(x-2\inƯ\left(3\right)\in\left\{\pm1;\pm3\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-3\) | \(3\) |
\(x\) | \(1\) | \(3\) | \(-1\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-1;1;3;5\right\}\)
e) Ta có: \(x+8=\left(x-7\right)+15\)
- Để \(x+8⋮x-7\)\(\Leftrightarrow\)\(\left(x-7\right)+15⋮x-7\)mà \(x-7⋮x-7\)
\(\Rightarrow\)\(15⋮x-7\)\(\Rightarrow\)\(x-7\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
- Ta có bảng giá trị:
\(x-7\) | \(-1\) | \(1\) | \(-3\) | \(3\) | \(-5\) | \(5\) | \(-15\) | \(15\) |
\(x\) | \(6\) | \(8\) | \(4\) | \(10\) | \(2\) | \(12\) | \(-8\) | \(22\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-8;2;4;6;8;10;12;22\right\}\)
f) Ta có: \(2x+9=\left(2x-10\right)+19=2.\left(x-5\right)+19\)
- Để \(2x+9⋮x-5\)\(\Leftrightarrow\)\(2.\left(x-5\right)+19⋮x-5\)mà \(2.\left(x-5\right)⋮x-5\)
\(\Rightarrow\)\(19⋮x-5\)\(\Rightarrow\)\(x-5\inƯ\left(19\right)\in\left\{\pm1;\pm19\right\}\)
- Ta có bảng giá trị:
\(x-5\) | \(-1\) | \(1\) | \(-19\) | \(19\) |
\(x\) | \(4\) | \(6\) | \(-14\) | \(24\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-14;4;6;24\right\}\)
g) Ta có: \(2x+16=\left(2x-16\right)+32=2.\left(x-8\right)+32\)
- Để \(2x+16⋮x-8\)\(\Leftrightarrow\)\(2.\left(x-8\right)+32⋮x-8\)mà \(2.\left(x-8\right)⋮x-8\)
\(\Rightarrow\)\(32⋮x-8\)\(\Rightarrow\)\(x-8\inƯ\left(32\right)\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16;\pm32\right\}\)
- Ta có bảng giá trị:
\(x-8\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) | \(-16\) | \(16\) | \(-32\) | \(32\) |
\(x\) | \(7\) | \(9\) | \(6\) | \(10\) | \(4\) | \(12\) | \(0\) | \(16\) | \(-8\) | \(24\) | \(-24\) | \(40\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-24;-8;0;4;6;7;9;10;12;16;24;40\right\}\)
h) Ta có: \(5x+2=\left(5x-5\right)+7=5.\left(x-1\right)+7\)
- Để \(5x+2⋮x-1\)\(\Leftrightarrow\)\(5.\left(x-1\right)+7⋮x-1\)mà \(5.\left(x-1\right)⋮x-1\)
\(\Rightarrow\)\(7⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(7\right)\in\left\{\pm1;\pm7\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(0\) | \(2\) | \(-6\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\)
k) Ta có: \(3x=\left(3x-6\right)+6=3.\left(x-2\right)+6\)
- Để \(3x⋮x-2\)\(\Leftrightarrow\)\(3.\left(x-2\right)+6⋮x-2\)mà \(3.\left(x-2\right)⋮x-2\)
\(\Rightarrow\)\(6⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(6\right)\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
- Ta có bảng giá trị:
\(x-2\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-6\) | \(6\) |
\(x\) | \(1\) | \(3\) | \(0\) | \(4\) | \(-1\) | \(5\) | \(-4\) | \(8\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-4;-1;0;1;3;4;5;8\right\}\)
\(a,-6x=18\)
\(=>x=\frac{18}{-6}=-3\)
\(b,2x-\left(-3\right)=7\)
\(=>2x+3=7\)
\(=>2x=7-3=4\)
\(=>x=\frac{4}{2}=2\)
\(c,\left(x-5\right)\left(x-6\right)=0\)
\(=>\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
a, \(21\in B\left(x-3\right)\Leftrightarrow x-3\inƯ\left(21\right)\Leftrightarrow x-3\in\left\{1;3;7;21;-1;-3;-7;-21\right\}\)
\(\Leftrightarrow x\in\left\{4;6;10;24;2;0;-4;-18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{4;6;10;24;2;0\right\}\)
b, \(1-x\inƯ\left(17\right)\Leftrightarrow1-x\in\left\{1;17;-1;-17\right\}\)
\(\Leftrightarrow x\in\left\{0;-16;2;18\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2;18\right\}\)
c, \(2x+3\in B\left(2x-1\right)\)
\(\Leftrightarrow2x+3⋮2x-1\Leftrightarrow2x-1+4⋮2x-1\Leftrightarrow4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(4\right)\Leftrightarrow2x-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow x\in\left\{1;\frac{3}{2};\frac{5}{2};0;\frac{-1}{2};\frac{-3}{2}\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{1;0\right\}\)
d, \(x+1\inƯ\left(x^2+x+3\right)\Leftrightarrow x^2+x+3⋮x+1\Leftrightarrow x\left(x+1\right)+3⋮x+1\Leftrightarrow3⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(3\right)\Leftrightarrow x+1\in\left\{1;3;-1;-3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;-4\right\}\)
Vì \(x\in N\Rightarrow x\in\left\{0;2\right\}\)
Bài 1: a) \(-2.\left(2x-8\right)+3.\left(4-2x\right)=\left(-72\right)-5.\left(3x-7\right)\)
\(-4x+16+12-6x=-72-15x+35\)
\(-4x-6x+15x=-72+35-16-12\)
\(5x=-65\)
\(x=-\frac{65}{5}\)
\(x=-13\)
b) \(3.\left|2x^2-7\right|=33\)
\(\left|2x^2-7\right|=\frac{33}{3}=11\)
\(\Rightarrow\orbr{\begin{cases}2x^2-7=11\\2x^2-7=-11\end{cases}\Rightarrow\orbr{\begin{cases}2x^2=18\\2x^2=-4\end{cases}\Rightarrow}\orbr{\begin{cases}x^2=9\\x^2=-2\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm3\\\end{cases}}}\)
Bài 2:
Ta có: \(2n+1⋮n-3\)
\(2n-6+7⋮n-3\)
\(2\left(n-3\right)+7⋮n-3\)
Vì \(2\left(n-3\right)⋮n-3\)
Để \(2\left(n-3\right)+7⋮n-3\)
Thì \(7⋮n-3\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n-3 | -1 | 1 | 7 | -7 |
n | 2 | 4 | 10 | -4 |
Vậy.....
hok tốt!!
❤ ✔
a) Tìm số nguyên x, biết:
Với \(x\in Z\), ta có:
9 - x = 8 - (2x + 16)
<=> 9 - x = 8 - 2x - 16
<=> 9 - x = -2x - 8
<=> x = -17 (TM)
Vậy x = -17
b) Với \(x\in Z\), ta có:
18 - 2x = 21 - (3x - 5)
<=> 18 - 2x = 21 - 3x + 5
<=> 18 - 2x = 26 - 3x
<=> x = 8 (TM)
Vậy x = 8