Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
a) (n + 2) chia hết cho (n - 1). \(\left(n\in N\right)\)
\(\Rightarrow\) n - 2 + 4 chia hết cho n - 1
\(\Rightarrow\) 4 chia hết cho n - 1
\(\Rightarrow\) n - 1 \(\in\) Ư(4) = {1; 2; 4;}
\(\Rightarrow\) n \(\in\) {2; 3; 5}
b) (2n + 7) chia hết cho (n + 1). \(\left(n\in N\right)\)
\(\Rightarrow\) 2n + 2 + 5 chia hết cho n + 1
\(\Rightarrow\) 2(n + 1) + 5 chia hết cho n + 1
\(\Rightarrow\) 5 chia hết cho n + 1
\(\Rightarrow\) n + 1 \(\in\) Ư(5) = {1; 5;}
\(\Rightarrow\) n \(\in\) {0; 4}
c) (2n + 1) chia hết cho (6 - n). \(\left(n\in N\right)\)
\(\Rightarrow\) (12 - 2n) - (12 - n) + (2n + 1) chia hết cho 6 - n
\(\Rightarrow\) 2(6 - n) - 12 + n + 2n + 1 chia hết cho 6 - n
\(\Rightarrow\) -12 + 3n + 1 chia hết cho 6 - n
\(\Rightarrow\) 18 - 3n - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) 3(6 - n) - 12 + 1 chia hết cho 6 - n
\(\Rightarrow\) -11 chia hết cho 6 - n
\(\Rightarrow\) 6 - n \(\in\) Ư(-11) = {-1; 1; -11; 11}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
d) 3n chia hết cho (5 - 2n) \(\left(n\in N\right)\)
\(\Rightarrow\) 3n chia hết cho 5 - n - n
\(\Rightarrow\) 15 - 4n - 4n chia hết cho 5 - n - n
\(\Rightarrow\) 3(5 - n - n) chia hết cho 5 - n - n
KL: Theo đề bài, ta có \(\left(n\in N\right)\) sao cho 3n chia hết cho (5 - 2n) và 2n < 5
\(\Rightarrow\) n \(\in\) {0; 1; 2}
e) (4n + 3) chia hết cho (2n + 6) \(\left(n\in N\right)\)
\(\Rightarrow\) (2n + 6) + (2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2(2n + 6) - 9 chia hết cho 2n + 6
\(\Rightarrow\) - 9 chia hết cho 2n + 6
\(\Rightarrow\) 2n + 6 \(\in\) Ư(-9) = {-1; 1; -3; 3; -9; 9}
\(\Rightarrow\) Không có số tự nhiên n thỏa mãn
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
2.
Gọi quãng đường cần tìm là s.---> vận tốc Xuân= s/12,
--> vận tốc Hạ=s/10
thời gian Xuân gặp Hạ: 50/(s/12)= (s-50)/(s/10)
50x12/s= (s-50)x10/s
50x12=10s-500
---> s = (500+50x12)/10= 110
quãng đường giữa nhà hai bạn là 110m
4.
Khi ngược dòng 1 giờ ta đi được số phần quãng sông là:
1 : 8 = 1/8 (quãng sông)
Khi xuôi dòng 1 giờ ta đi được số phần quãng sông là:
1 : 4 = 1/4 (quãng sông)
Bèo trôi theo ta về 1 giờ trôi được số phần quãng sông là:
(1/4 - 1/8) : 2 = 1/16 (quãng sông)
Bèo trôi theo ta về cập bến sau số giờ là:
1 : 1/16 = 16 (giờ)
Đ/s: 16 giờ
Cạnh hình vuông là một số nguyên, do đó diện tích của hình vuông chính là số chính phương ( vì diện tích hình vuông là bình phương của cạnh hình vuông).
Thấy: diện tích hình vuông là 1 số gồm 2001 chữ số 1, có tổng các chữ số là:
1.2001=20011.2001=2001
2001 là 1 số chia hết cho 3, vì vậy mỗi cạnh hình vuông đều phải chia hết cho 3, đặt cạnh hình vuông là 3k (k∈Z)
Diện tích là (3k)2=9k2
Như vậy diện tích là 1 số chia hết cho 9. Mà 2001 không chia hết cho 9
⇒Không tồn lại 1 hình vuông mà số đo độ dài các cạnh là số nguyên và số đo diện tích là 1111.....111 (2001 chữ số 1)
Vậy không tồn lại 1 hình vuông mà số đo độ dài các cạnh là số nguyên và số đo diện tích là 1111.....111 (2001 chữ số 1)
Ta luôn có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và \(\left|x-y\right|=\left|y-x\right|\)
\(\Rightarrow\left|x-2\right|=\left|2-x\right|;\left|x-4\right|=\left|4-x\right|;...;\left|x-8\right|=\left|8-x\right|;\left|x-10\right|=\left|10-x\right|\)
\(\Rightarrow A=\left|x-1\right|+\left|2-x\right|+\left|x+3\right|+\left|4-x\right|+...+\left|x-9\right|+\left|10-x\right|\)
\(\Rightarrow A\ge\left|x-1+2-x+x-3+4-x+...+x-9+10-x\right|\)
\(=\left|\left(x-x+x-x+x-x+...+x-x\right)+\left(2-1\right)+\left(4-3\right)+...+\left(10-9\right)\right|\)
\(=\left|0+1+1+1+1+1\right|\)
\(=5\)
\(\Rightarrow A\ge5\)
\(\Rightarrow\) GTNN của A = 5 tại \(\left(x-1\right)\left(2-x\right)\left(x-3\right)...\left(x-10\right)\ge0\)
Lời giải:
\(A=a_1a_2+a_2a_3+....+a_{n-1}a_n+a_na_1=0\)
Nếu $n$ lẻ, ta thấy tổng $A$ gồm lẻ số hạng, mỗi số hạng có giá trị $1$ hoặc $-1$ nên $A$ lẻ \(\Rightarrow A\neq 0\) (vô lý)
Do đó $n$ chẵn. Nếu $n$ có dạng $4k+2$. Vì $A=0$ nên trong $4k+2$ số hạng trên sẽ có $2k+1$ số có giá trị là $1$ và $2k+1$ số có giá trị $-1$. Vì mỗi số $a_i$ trong $A$ xuất hiện $2$ lần nên \(a_1a_2a_2a_3....a_{n-1}a_na_{n}a_{1}=(a_1a_2...a_n)^2=1^{2k+1}(-1)^{2k+1}=-1\) (vô lý)
Do đó $n$ phải có dạng $4k$, tức là $n$ chia hết cho $4$ (đpcm)
Ta có : 4n - 5 chia hết cho n - 3
=> 4n - 12 + 17 chia hết cho n - 3
=> 4(n-3) + 17 chia hết cho n - 3
=> 17 chia hết cho n - 3
=> n - 3 \(\in\) Ư(17) = {+1;+17}
Với n - 3 = 1 => n = 4
Với n - 3 = -1 =. n = 2
Với n - 3 = 17 => n = 20
Với n - 3 = -17 => n = -14
Vậy n \(\in\) {4;2;20;-14}