Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7a5b1⋮3\Leftrightarrow7+a+5+b+1⋮3\Leftrightarrow7+6+a+b⋮3\Leftrightarrow13+a+b⋮3\Leftrightarrow12+1+a+b⋮3\Leftrightarrow a+b+1⋮3\)
\(9+\left(9-4\right)+1\ge a+b+1\ge0+\left(0+4\right)+1\Leftrightarrow15\ge a+b+1\ge5\Rightarrow a+b+1\in\left\{6;9;12;15\right\}\Leftrightarrow a+b\in\left\{5;8;11;14\right\}\)
\(+,a+b=5\Rightarrow b=\frac{\left(5-4\right)}{2}=\frac{1}{2}\left(loai\right)\)
\(+,a+b=8\Rightarrow\left\{{}\begin{matrix}a=\frac{\left(8+4\right)}{2}\\b=\frac{\left(8-4\right)}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=6\\b=2\end{matrix}\right.\)
\(+,a+b=11\Rightarrow b=\frac{\left(11-4\right)}{2}=3,5\left(loai\right)\)
\(+,a+b=14\Rightarrow\left\{{}\begin{matrix}a=\frac{\left(14+4\right)}{2}\\b=\frac{\left(14-4\right)}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=9\\b=5\end{matrix}\right.\)
1. Tìm số TN a,b t/m:
a, Ta có : \(\overline{7a5b1}⋮3\)=> 7+a+5+b+1=13+a+b\(⋮\)3.
=>\(a+b\in\left\{5;9;14\right\}\)
Nếu a+b=5; a-b=4=>ko có a,b t/m.
Nếu a+b=9; a-b=4=>ko có a,b t/m.
Nếu a+b=14; a-b=4=>a=9; b=5.
Vậy a=9; b=5(t/m).
c, Giải
Gọi 2 só TN chia hết cho 9 là 9a và 9b.
T/có:9a+9b=\(\overline{m657}\) (1)
9a-9b=\(\overline{5n91}\) (2)
Từ (1) do: \(9a⋮9\); 9b\(⋮\)9 =>\(\overline{m657⋮3}\)
=> 18+m\(⋮\)3 => m=9.
Do đó: 9a+9b=9657.
Từ (2) do: \(9a⋮9\) và \(9b⋮9\) => \(\overline{5n91⋮3}\)
=> 15+n\(⋮\)3 => n=3.
Do đó: 9a+9b=5391.
Vậy 9a=\(\frac{9657+5391}{2}=7524\)
9b=\(\frac{9657-5391}{2}=2133\)
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
Đáp án:
x=-6, x=1
Giải thích các bước giải:
$(x+1)(x+2)(x+3)(x+4) = 120\\
⟹ (x+1)(x+4)(x+2)(x+3) = 120\\
⟹ (x^2 +5x+4)( x^2+5x+6) = 120\\
\text{Đặt x2+5x=yx2+5x=y}\\
\Rightarrow (y +4)(y +6) = 120\\
⟹ y^2 +10y +24 = 120\\
⟹ y^2 +10y −96 = 0\\
⟹ y^2 +16x−6x−96 = 0\\
⟹ y(y +16)−6(y +16) = 0\\
\Rightarrow (y +16)(y −6) = 0\\
⟹ y = −16\quad và\quad y = 6
\text{Nếu }x^2+5x=6
\rightarrow x(x+6)−1(x+6) = 0
(x+6)(x−1) = 0
⟹ x = −6\quad và \quad x = 1
Hoặc\quad x^2+5=-16 \quad\text{Vô nghiệm do vế trái luôn > 0 với mọi x}$
vì cả hai số tự nhiên đều chia hết cho 9 mà tổng và hiệu của hai số tự nhiên chia hết cho 9 cũng phải chia hết cho 9 suy ra *657 chia hết cho 9.Để *657 chia hết cho 9 thì * + 6 + 5 + 7 = * + 18 phải chia hết cho 9,vậy * có thể bằng 9.Ta có số 9657
Để 5*91 chia hết cho 9 thì 5 + * + 9 + 1 = 15 + * cũng phải chia hết cho 9 vậy * = 3.Ta có số 5391
số lớn là
(9657 + 5391) : 2 = 7524
Số bé là
9657 - 7524 = 2133
Đ/số số lớn 7524
số bé 2133
a và b chia hết cho 9 thì tổng và hiệu cũng chia hết cho 9
thay lần lượt các dấu * để tổng và hiệu chia hết cho 9 thì có tổng = 9657 và hiệu = 5391
giải ra 2 số đó là 7524 và 2133