Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 3 + 32 + 33 + ..... + 3100
=> 3A = 32 + 33 + 34 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> 2A + 3 = 3101
=> x = 101
Vậy x = 101 .
\(A=3+3^2+3^3+........+3^{100}\)
\(3A=3^2+3^3+.......+3^{101}\)
\(3A-A=\left(3^2+3^3+........+3^{101}\right)-\left(3+3^2+3^3+........+3^{100}\right)\)
\(3A-A=3^2+3^3+........+3^{101}-3-3^2-3^3-........-3^{100}\)
=> \(2A=3^{101}-3\)
Sau đó làm tiếp
A = 3 + 32 + 33 + ... + 3100
3A = 32 + 33 + 34 + ... + 3101
3A - A = 3101 + 3100 - 3100 + 399 - 399 + ... + 34 - 34 + 33 - 33 + 32 - 32 - 3
(3 - 1)A = 3101 - 3
2A = 3101 - 3
\(\Rightarrow A=\frac{3^{101}-3}{2}\)
Ta có:
2A + 3 = 3n
2 . \(\frac{3^{101}-3}{2}\) + 3 = 3n
3101 - 3 + 3 = 3n
3101 = 3n
Vậy n = 101
Ta có:
\(A=3+3^2+3^3+...+3^{2009}\)
\(3A=3^2+3^3+3^4+...+3^{2010}\)
\(3A-A=2A=\left(3^2+3^3+3^4+...+3^{2010}\right)-\left(3+3^2+3^3+...+3^{2009}\right)\)
\(2A=3^{2010}-3\)
\(A=\frac{3^{2010}-3}{2}\)
Ta có:
2A + 3 = 32010 - 3 + 3 = 32010
=> n = 2010
Vậy n = 2010
ỦNG HỘ NHA
A = \(3+3^2+3^3+...+\)\(3^{100}\) (1)
3A = \(3^2+3^3+3^4+...+3^{101}\) (2)
lấy (2) trừ (1) ta được :
2A= \(3^{101}-3\)
ta có : 2A+3 = \(3^n\)
=> \(3^{101}-3+3=3^n\)
\(3^{101}=3^n\)
=> \(n=101\)
A=3+32+33+...+32009
=>3A=32+33+...+32010
=>3A-A=32+33+...+32010-(3+32+33+...+32009)
=>2A=32+33+...+32010-3-32-33-...-32009
=>2A=33010-3
=>2A+3=32010
mà 2A+3=3n
=>n=2010