Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,(a,b)+[a,b]=10
Gọi ƯCLN(a,b) là d
BCNN(a,b) là m, ta có
a=dm (m,n)=1
a-dn m>n
=> [a,b]=dmn
Ta thấy (a,b)+[a,b]=10
Mà (a,b)=d;[a,b]=dmn
=> d+dmn=10 => d(mn+1)=10
=> d và mn+1 đều thuộc Ư(10)
Ư(10)={1;2;5;10}
d,mn+1 thuộc {1;2;5;10}
Ta có bảng sau
d | mn+1 | mn | m | n | a | b |
1 | 10 | 9 | 9 | 1 | 9 | 1 |
2 | 5 | 4 | 4 | 1 | 8 | 2 |
5 | 2 | 1 | bỏ | bỏ | bỏ | bỏ |
10 | 1 | 0 | bỏ | bỏ | bỏ | bỏ |
BẠN TỰ KẾT LUẬN NHÉ!
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{101}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{101}-2\)
\(a+2=2^{101}-2+2=2^{201}\)
\(\Rightarrow x=101\)
\(a=2^1+2^2+2^3+...+2^{100}\)
\(2a=2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(a=2^{99}-2\)
\(a+2=2^{99}-2+2=2^{99}\)
\(\Rightarrow x=99\)
Những số có tận cùng là 5 thì mũ bao nhiêu cũng vẫn sẽ có tận cùng là 5 và nó có dạng:\(...5^x=...5\)
Vậy 2015^2016= một số có tận cùng là 5
Những số có tận cùng là 4 mà số mũ của nó là số lẻ thì nó sẽ có số tận cùng là 4 và nó có dạng:\(...4^x=...4\)
Vì 2015^2016 là số lẻ nên 2014^2015^2016 sẽ có số tận cùng là 4
cho minh nha
a) \(10^a+483=b^2\) (*)
Nếu \(a=0\) thì (*) \(\Leftrightarrow b^2=484\Leftrightarrow b=22\)
Nếu \(a\ge1\) thì VT (*) chia 10 dư 3, mà \(VP=b^2\) không thể chia 10 dư 3 nên ta có mâu thuẫn. Vậy \(\left(a,b\right)=\left(0,22\right)\) là cặp số tự nhiên duy nhất thỏa mãn điều kiện bài toán.
(Chú ý: Trong lời giải đã sử dụng tính chất sau của số chính phương: Các số chính phương khi chia cho 10 thì không thể dư 2, 3, 7, 8. Nói cách khác, một số chính phương không thể có chữ số tận cùng là 2, 3, 7, 8)
b) Bạn gõ lại đề bài nhé, chứ mình nhìn không ra :))
1/ a) \(2.3.12.12.3=2.3.2^2.3.2^2.3.3=2^5.3^4\)
b) \(3.5.27.125=3.5.3^3.5^3=3^4.5^4=\left(3.5\right)^4\)
2/ a) \(\left(27^3\right)^4=27^{3.4}=27^{12}\)
Vậy \(\left(27^3\right)^4=27^{12}\)
b) \(5^{36}=\left(5^6\right)^6\) và \(11^{24}=\left(11^4\right)^6\)
Do đó \(5^6=15625\) và \(11^4=14641\)
Vì 15625>14641 nên\(\left(5^6\right)^6>\left(11^4\right)^6hay5^{36}>11^{24}.\)
3/ a) \(x^3=125=>x=5\)
b) \(\left(3x-14\right)^3=2^5.5^2+200\)
\(\left(3x-14\right)^3=1000\)
\(3x-14=10^3\)
\(3x=10^3+14\)
\(3x=1014\)
\(x=\frac{1014}{3}=338\)
c) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(2x-1=3\)
\(2x=3+1\)
\(x=\frac{4}{2}=2\)
d) \(5x+3^4=2^2.7^2\)
\(5x+3^4=\left(2.7\right)^2=14^2\)
\(5x+81=196\)
\(5x=196-81\)
\(5x=115\)
\(x=\frac{115}{5}=23\)
e) \(4^x=1024=>x=5\).