K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)

\(=6a+15\)

\(=6.a+12+3\)

\(=6.\left(x+2\right)+3\)

Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3

Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6

2) Ta có 3 là số lẻ nên 32018 là số lẻ

11 là số lẻ nên 112017 là số lẻ 

Do đó 32018-112017là số chẵn nên chia hết cho 2

3)\(n+4⋮n\)

có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)

\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)

4)\(3n+7⋮n\)

có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)

13 tháng 1 2019

\(~~~HD~~~\)

\(1023^{1024}=\left(1023^4\right)^{256}=\left(...1\right)^{256}=\left(.....1\right)\)

11 tháng 2 2020

https://olm.vn/hoi-dap/detail/56174930308.html

Tham khảo vài câu ở đây nha !

12 tháng 2 2020

Bạn ơi mình ko vào được

18 tháng 12 2015

a) A = 1 + 22 + 24 + ... + 22016

=> 4A = 22 + 24 + ... + 22018

=> 4A - A = 22018 - 1

=> 3A = 22018 -1

Theo bài ra : 3A + 1 = 2n

=> 22018 - 1 + 1 = 2n

=> 22018 = 2n

=> n = 2018

b) Ta có :

3n + 1 chia hết cho 2n - 3

=> 6n - 3n + 1 chia hết cho 2n - 3

=> 3.(2n-1) + 1 chia hết cho 2n - 3

=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}

=> 2n \(\in\) {4;6}

=> n \(\in\) {2;3}

28 tháng 10 2015

A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

suy ra 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)

=n(n+1)(n+2)(n+3)

29 tháng 10 2015

Đặt ak  = k.(k+1).(k+2)

4a1 = 1.2.3.3-0.1.2.3

4a2 = 2.3.4.3-1.2.3.3

     ………….

4an-1 = (n-1).n.(n+1).(n+2)-(n-2).(n-1).n.(n+1)

4an = n.(n+1).(n+2).(n+3)-(n-1).n.(n+1).(n+2)

     Cộng từng vế n, ta được:

4(a1+a2+a3+………….+an) = n.(n+1).(n+2).(n+3)

4[1.2.3+2.3.4+3.4.5+………………..+n.(n+1).(n+2)] = n.(n+1).(n+2).(n+3)

=> A =   \(\frac{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}{4}\)

11 tháng 8 2018

AI NHANH THÌ MÌNH K 3 CÁI LUÔN  NHA.

11 tháng 8 2018

a) Để n + 2  ⋮ n thì  2  ⋮ n => n \(\in\)Ư(2) = {1; 2}

Vậy n = {1; 2}

b)Để  3n + 5 ⋮ n thì 5  ⋮ n => n \(\in\)Ư(5) = {1; 5}

Vậy n = {1; 5}

c) Để : 18 - 5n  ⋮ n thì 18  ⋮ n =>  \(\in\)Ư(18) = {1; 2; 3; 6; 9; 18}

Vậy n = {1;2;3;6;9;18}