K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

Giải:

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) => \(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

=> \(\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\) => \(\hept{\begin{cases}a=5.2=10\\b=5.3=15\\c=5.4=20\end{cases}}\)

Vậy ...

19 tháng 6 2019

Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Leftrightarrow\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta lại có :

\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)

Do đó : \(\hept{\begin{cases}\frac{a}{2}=5\Leftrightarrow a=10\\\frac{2b}{6}=5\Leftrightarrow b=15\\\frac{3c}{12}=5\Leftrightarrow c=20\end{cases}}\)

Vậy a = 10 , b = 15 , c = 20

20 tháng 8 2015

tinh chat day ti so bang nhau

20 tháng 8 2015

Áp dụng tính chất dãy tỉ số bằng nhau rồi tự suy nghĩ cách giải đi! Cái gì cũng đăq rồi não thành não bò á @@

30 tháng 1 2019

Theo bài ra,ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{2b}{6}=\frac{3c}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{-4}=\frac{-20}{-4}=5\)(vì a+2b-3c=-20)

\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\Rightarrow a=10\\\frac{b}{3}=5\Rightarrow b=15\\\frac{c}{4}=5\Rightarrow c=20\end{cases}}\)

24 tháng 12 2018

Câu 1 :

Ta có  \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)

Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)

\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)

Do : \(a-b=15\)

\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)

\(\Rightarrow k=5.2=10\)

\(\Rightarrow a=2.10=20\)

\(\Rightarrow b=\frac{3.10}{2}=15\)

\(\Rightarrow c=\frac{40}{3}\)

24 tháng 12 2018

BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):

\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)

=> cả 2 thừa số đều lẻ.

=>\(2018^a+2018a+b\)là số lẻ        (1)

Với a khác 0,từ (1) suy ra:

b lẻ.

=>3b+1  chẵn

=>2008a+3b+1 chẵn(loại)

=>a=0,thay vào đề bài,ta có:

(3b+1)(b+1)=225=3*75= 5*45=9*25

do 3b+1>b+1 và 3b+1 không chia hết cho 3

\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)

vậy:a=0,b=8

10 tháng 8 2020

a) \(\hept{\begin{cases}2x=5y=8z\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}\\x-2y-3z=0,5\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}=\frac{x-2y-3z}{\frac{1}{2}-\frac{2}{5}-\frac{3}{8}}=\frac{0,5}{-\frac{11}{40}}=\frac{-20}{11}\)

=> x = -10/11 ; y = -4/11 ; z = -5/22

b) \(\hept{\begin{cases}0,2a=0,3b=0,4c\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{5}{2}}\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}\\2a+3b-5c=-1,8\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}=\frac{2a+3b-5c}{10+10-\frac{25}{2}}=\frac{-1,8}{\frac{15}{2}}=-\frac{6}{25}\)

=> a = -6/5 ; b = -4/5 ; c = -3/5

c) \(\hept{\begin{cases}a=\frac{3}{4}b=\frac{5}{6}c\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}=\frac{2b-a-c}{\frac{8}{3}-1-\frac{6}{5}}=\frac{-39}{\frac{7}{15}}=\frac{-585}{7}\)

=> a = -585/7 ; b = -780/7 ; c = -702/7

10 tháng 8 2020

a) Ta có :\(\hept{\begin{cases}2x=5y\\3y=8z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)

=> x = -2 ; y = -0,8 ; z = -0,3

b) Ta có : \(0,2a=0,3b=0,4c\Rightarrow0,2a.\frac{1}{12}=0,3b.\frac{1}{12}=0,4c.\frac{1}{12}\)

=> \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}\Rightarrow\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}=\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}=\frac{2a+3b-5c}{120+120-150}=\frac{-1,8}{90}=-0,02\)

=> a =  -1,2 ; b = -0,8 ; c = -0,6

c) \(\frac{2}{3}a=\frac{3}{4}b=\frac{5}{6}c\)

=> \(\frac{2}{3}a.\frac{1}{30}=\frac{3}{4}b.\frac{1}{30}=\frac{5}{6}c.\frac{1}{30}\Rightarrow\frac{a}{45}=\frac{b}{40}=\frac{c}{36}\Rightarrow\frac{a}{45}=\frac{2b}{80}=\frac{c}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{45}=\frac{b}{40}=\frac{c}{36}=\frac{2b}{80}=\frac{2b-a-c}{80-45-36}=\frac{-39}{-1}=39\)

=> a = 1755 ; b = 1560 ; c = 1404

25 tháng 7 2015

1. 2a = 3b ; 5b =7c
Từ giả thiết 2a = 3b => \(\frac{a}{3}=\frac{b}{2}\)=>\(\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=>\frac{a}{21}=\frac{b}{14}\)
                 5b = 7c => \(\frac{b}{7}=\frac{c}{5}=>\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=>\frac{b}{14}=\frac{c}{10}\)
Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\) và 3a + 5c -7b = 30
Ta đặt \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=k\)
Suy ra a= 21k, b= 14k, c= 10k
Theo giả thiết: 3a + 5c - 7b = 30 =>3.21k + 5.10k - 7.14k = 30
                                               =>63k + 50k - 98k= 30 => 15k = 30=> k= 2
Vậy a = 21.2=42
       b = 14.2= 28
       c = 10.2=20.
2. Bạn giải như bài trên nha!

20 tháng 7 2016

bn ơi tại sao lại có 1/7 vậy