Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Bài 1:
\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-...-49}{89}\)
\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{44.49}\right).-\left(\frac{3+5+7+...+49-1}{89}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right).-\left(\frac{\left(49+3\right).24:2-1}{89}\right)\)(Do tổng có 24 số)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).-\left(\frac{52.12-1}{89}\right)\)
\(=\frac{1}{5}.\frac{45}{196}.\left(-7\right)=-\frac{9}{28}\)
Bài 2:
a) Ta có:
\(|2x+3|=x+2\)
<=> x + 2 >=0 và: \(\orbr{\begin{cases}2x+3=x+2\\2x+3=-x-2\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}2x-x=2-3\\2x+x=-2-3\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}x=-1\left(n\right)\\x=-\frac{5}{3}\left(n\right)\end{cases}}\)( n là viết tắt của "nhận" nha bạn)
Vậy x ={-1 ; -5/3}
Xin lỗi vì tớ ko thể lồng dấu \(\hept{\begin{cases}\\\end{cases}}\) và dấu \(\orbr{\begin{cases}\\\end{cases}}\) được nếu lồng sẽ bị lỗi nên tớ dùng chữ "và" nha bạn
b)
A = \(|x-2006|+|2007-x|\)
Vì \(\hept{\begin{cases}|x-2006|\ge0\\|2007-x|\ge0\end{cases}}\)
Nến giá trị A sẽ nhỏ nhất khi \(\orbr{\begin{cases}x=2006\\x=2007\end{cases}}\)
=> Min A = 1 khi x ={2006 ; 2007}
Để \(x^2+5x< 0\)
Vì \(x^2\ge0\)nên \(5x>-x^2\)
\(\Rightarrow5>-x^2+x\)
Phần b nhìn hơi logic thế thôi nhưng tương tự
d) \(D=|x+\frac{1}{2}|+|y-\frac{1}{5}|+|x+\frac{1}{4}|\)
\(=\left(|x+\frac{1}{2}|+|x+\frac{1}{4}|\right)+|y-\frac{1}{5}|\)
Đặt \(F=|x+\frac{1}{2}|+|x+\frac{1}{4}|\)
\(=|x+\frac{1}{2}|+|-x-\frac{1}{4}|\ge|x+\frac{1}{2}-x-\frac{1}{4}|\)
Hay \(F\ge\frac{1}{4}\)
Dấu "=" xảy ra\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}\ge0\\-x-\frac{1}{4}\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+\frac{1}{2}< 0\\-x-\frac{1}{4}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{2}\\x\le\frac{-1}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{-1}{2}\\x>\frac{-1}{4}\end{cases}}\)( loại )
\(\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{4}\)
Đặt \(E=|y-\frac{1}{5}|\)
Vì \(|y-\frac{1}{5}|\ge0;\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow|y-\frac{1}{5}|=0\)
\(\Leftrightarrow y=\frac{1}{5}\)
\(\Rightarrow F+E\ge\frac{1}{4}\)
Hay \(D\ge\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)
Vậy MIN \(D=\frac{1}{4}\)\(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)
Chết mik nhầm câu d) phải là \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Dù sao mik cx cảm ơn bn[ OC ].Không khóc vì em
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
Bài 1:
Mình sửa lại đề 1 chút: \(x+x^3+x^5+...+x^{101}=P\left(x\right)\)
Số hạng trong dãy là: (101-1):2+1=51
P(-1)=(-1)+(-1)3+(-1)5+...+(-1)101
Vì (-1)2n+1=-1 với n thuộc Z
=> P(-1)=(-1)+(-1)+....+(-1) (có 51 số -1)
=> P(-1)=-51