K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(\left(2x+1\right)^2+\left(b+3\right)^4=0\)

Mà \(\left(2a+1\right)^2\ge0\forall x;\left(b+3\right)^4\ge0\forall b\)

\(\left(2a+1\right)^2+\left(b+3\right)^4=0\)chỉ khi: \(\hept{\begin{cases}\left(2a+1\right)^2=0\Rightarrow2a+1=0\Rightarrow a=\frac{-1}{2}\\\left(b+3\right)^4=0\Rightarrow b+3=0\Rightarrow b=-3\end{cases}}\)

12 tháng 9 2021

\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6\le0\)

Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< 0\)=> Vô lý

Xét: \(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6=0\)

\(\Rightarrow\left(a-7\right)^2=0\Rightarrow a-7=0\Rightarrow a=7\)

\(\Rightarrow\left(3b+2\right)^2=0\Rightarrow3b+2=0\Rightarrow3b=-2\Rightarrow b=\frac{-2}{3}\)

\(\Rightarrow\left(4c-5\right)^6=0\Rightarrow4c-5=0\Rightarrow4c=5\Rightarrow c=\frac{5}{4}\)

30 tháng 6 2019

a) 4x + 1/3 = 3/4

=> 4x = 3/4 - 1/3

=> 4x = 5/12

=> x = 5/12 : 4

=> x = 5/48

b) 1/3 - 2/5 + 3x = 3/4

=> -1/15 + 3x = 3/4

=> 3x = 3/4 + 1/15

=> 3x = 49/60

=> x = 49/ 60 : 3

=> x = 49/180

c) 3(1/2 - x) + 1/3 = 7/6 - x

=> 3/2 - 3x + 1/3 = 7/6 - x

=> 11/6 - 3x = 7/6 - x

=> 11/6 - 7/6 = -x + 3x

=> 2/3 = 2x

=> x = 2/3 : 2

=> x = 1/3

a) \(4x+\frac{1}{3}=\frac{3}{4}\)

\(4x=\frac{3}{4}-\frac{1}{3}\)

\(4x=\frac{9}{12}-\frac{4}{12}\)

\(4x=\frac{5}{12}\)

\(x=\frac{5}{12}:\frac{4}{1}=\frac{5}{12}.\frac{1}{4}\)

\(x=\frac{5}{48}\)

8 tháng 11 2019

Mọi người ơi giúp e với :>>

đang cần gấp mn ơi:>>>

24 tháng 12 2018

Câu 1 :

Ta có  \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)

\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)

Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)

\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)

Do : \(a-b=15\)

\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)

\(\Rightarrow k=5.2=10\)

\(\Rightarrow a=2.10=20\)

\(\Rightarrow b=\frac{3.10}{2}=15\)

\(\Rightarrow c=\frac{40}{3}\)

24 tháng 12 2018

BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):

\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)

=> cả 2 thừa số đều lẻ.

=>\(2018^a+2018a+b\)là số lẻ        (1)

Với a khác 0,từ (1) suy ra:

b lẻ.

=>3b+1  chẵn

=>2008a+3b+1 chẵn(loại)

=>a=0,thay vào đề bài,ta có:

(3b+1)(b+1)=225=3*75= 5*45=9*25

do 3b+1>b+1 và 3b+1 không chia hết cho 3

\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)

vậy:a=0,b=8

10 tháng 8 2020

a) \(\hept{\begin{cases}2x=5y=8z\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{8}}\\x-2y-3z=0,5\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}\\x-2y-3z=0,5\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{2y}{\frac{2}{5}}=\frac{3z}{\frac{3}{8}}=\frac{x-2y-3z}{\frac{1}{2}-\frac{2}{5}-\frac{3}{8}}=\frac{0,5}{-\frac{11}{40}}=\frac{-20}{11}\)

=> x = -10/11 ; y = -4/11 ; z = -5/22

b) \(\hept{\begin{cases}0,2a=0,3b=0,4c\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{\frac{10}{3}}=\frac{c}{\frac{5}{2}}\\2a+3b-5c=-1,8\end{cases}}\Rightarrow\hept{\begin{cases}\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}\\2a+3b-5c=-1,8\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2a}{10}=\frac{3b}{10}=\frac{5c}{\frac{25}{2}}=\frac{2a+3b-5c}{10+10-\frac{25}{2}}=\frac{-1,8}{\frac{15}{2}}=-\frac{6}{25}\)

=> a = -6/5 ; b = -4/5 ; c = -3/5

c) \(\hept{\begin{cases}a=\frac{3}{4}b=\frac{5}{6}c\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\Rightarrow\hept{\begin{cases}\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}\\2b-a-c=-39\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{1}=\frac{2b}{\frac{8}{3}}=\frac{c}{\frac{6}{5}}=\frac{2b-a-c}{\frac{8}{3}-1-\frac{6}{5}}=\frac{-39}{\frac{7}{15}}=\frac{-585}{7}\)

=> a = -585/7 ; b = -780/7 ; c = -702/7

10 tháng 8 2020

a) Ta có :\(\hept{\begin{cases}2x=5y\\3y=8z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}}\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{3z}{9}=\frac{x-2y-3z}{20-16-9}=\frac{0,5}{-5}=-0,1\)

=> x = -2 ; y = -0,8 ; z = -0,3

b) Ta có : \(0,2a=0,3b=0,4c\Rightarrow0,2a.\frac{1}{12}=0,3b.\frac{1}{12}=0,4c.\frac{1}{12}\)

=> \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}\Rightarrow\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{a}{60}=\frac{b}{40}=\frac{c}{30}=\frac{2a}{120}=\frac{3b}{120}=\frac{5c}{150}=\frac{2a+3b-5c}{120+120-150}=\frac{-1,8}{90}=-0,02\)

=> a =  -1,2 ; b = -0,8 ; c = -0,6

c) \(\frac{2}{3}a=\frac{3}{4}b=\frac{5}{6}c\)

=> \(\frac{2}{3}a.\frac{1}{30}=\frac{3}{4}b.\frac{1}{30}=\frac{5}{6}c.\frac{1}{30}\Rightarrow\frac{a}{45}=\frac{b}{40}=\frac{c}{36}\Rightarrow\frac{a}{45}=\frac{2b}{80}=\frac{c}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{45}=\frac{b}{40}=\frac{c}{36}=\frac{2b}{80}=\frac{2b-a-c}{80-45-36}=\frac{-39}{-1}=39\)

=> a = 1755 ; b = 1560 ; c = 1404

4 tháng 1 2019

Sai đề rồi bố ạ!

4 tháng 1 2019

cho mình nhỏi sai chỗ nào hả bạn shitbo

9 tháng 8 2020

a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)

=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\) 

=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)

=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)

=> a = -2,4 ; b = -1,6 ; c = -0,9

b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)

=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)

=> \(\frac{a}{20}=\frac{b}{18}\)(1)

Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)

Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)

=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)

=>  a = -40 ; b = - 36 ; z = -30

9 tháng 8 2020

a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)

\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)

b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)

 \(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)

Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16

\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)

\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)