Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+....+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
b)
Tách ra thành 2 tổng :\(D=3+3^3+...+3^{99}\) và \(E=3^2+3^4+...+3^{100}\)
\(3^2D=3^3+3^5+...+3^{101}\)
\(9D-D=\left(3^3+3^5+...+3^{101}\right)-\left(3+3^3+...+3^{99}\right)\)
\(8D=3^{101}-3\Leftrightarrow D=\frac{3^{101}-3}{8}\)
Tương tự \(E=\frac{3^{102}-3^2}{8}\)
Ta có \(D-E=B\)
Do đó \(\frac{3^{101}-3-3^{102}+3^2}{8}\)
Tương tự phần a, b tính được \(C=\frac{5^{202}-1}{24}\)
c,\(C=1+5^2+5^4+5^6+...+5^{200}\)
\(\Rightarrow25C=5^2+5^4+5^6+5^8+...+5^{202}\)
\(\Rightarrow25C-C=24C=\left(5^2+5^4+...+5^{202}\right)-\left(1+5^2+...+5^{200}\right)\)
\(=5^{202}-1\)
\(\Rightarrow C=\frac{5^{202}-1}{24}\)
A = 1 + 2 + 22 + ... + 2100
=> 2A = 2 + 22 + 23 + ... + 2100 + 2101
=> 2A - A = ( 2 + 22 + 23 + ... + 2100 + 2101 ) - ( 1 + 2 + 22 + ... + 2100 )
=> A = 2101 - 1
\(a,5^2.36+25.4\)
\(=25.36+25.4\)
\(=25.\left(36+4\right)\)
\(=25.40\)
\(=1000\)
\(b,7^9.7^7:7^{15}-7^0\)
\(=7^{16}:7^{15}-1\)
\(=7-1\)
\(=6\)
a) 52.36 + 25 .4
= 25.36 + 25 .4
=25 . ( 36 + 4 )
=25 . 40
=25.4.10
=100.10
=1000
\(2.11^{25}:11^{23}-3^5:\left(1^{2018}+2^3\right)-60\)
\(=2.\left(11^{25}:11^{23}\right)-3^5:\left(1+8\right)-60\)
\(=2.11^2-3^5:9-60\)
\(=2.121-3^5:3^2-60\)
\(=242-3^3-60\)
\(=242-27-60\)
\(=215-60\)
\(=155\)
a) \(4.5^2-81:3^2=4.25-81:9=100-9=91\)
b) \(3^3.23-3^3.19=3^3.\left(23-19\right)=27.4=108\)
c) \(2^4.5-[131-\left(13-4\right)^2]=16.5-\left(131-9^2\right)=80-\left(131-81\right)=80-50=30\)
d) \(100:\left\{250:\left[450-\left(4.5^3-2^2.25\right)\right]\right\}\)
\(=100:\left\{250:\left[450-4.\left(125-25\right)\right]\right\}\)
\(=100:\left[250:\left(450-4.100\right)\right]\)
\(=100:\left[250:\left(450-400\right)\right]=100:\left(250:50\right)=100:5=20\)
b) 3^2 . [(5^2 - 3 ) : 11 ] - 2^4 + 2.10^3
= 9 . [(25 - 3 ) : 11 ] - 16 + 2.1000
= 9 . [22 : 11 ] - 16 + 2000
= 9 . 2 - 16 + 2000
= 18 - 16 + 2000
= 2 + 2000
= 2002
(72005 + 72004) : 72004
= 72005 : 72004 + 72004 : 72004
= 72005 - 2004 + 1
= 71 + 1
= 7 + 1
= 8
a) ( 3^5 . 3^7 ) : 3^10 + 5.2^4 - 7^3 : 7
= 3^10 : 3^10 + 80 - 7^2
= 1 + 80 - 49
= 32
a)Ta có:S1=5+52+53+…+599+5100
=>5.S1=52+53+54+…+5100+5101
=>5.S1-S1=52+53+54+…+5100+5101-5-52-53-…-599-5100
=>4.S1=5101-5
=>\(S_1=\frac{5^{101}-5}{4}\)
b)S2=2+22+23+…+299+2100
=>2.S2=22+23+24+…+2100+2101
=>2.S2-S2=22+23+24+…+2100+2101-2-22-23-…-299-2100
=>S2=2101-2
2S1=52+53+54+....+5100+5101
2S1-s1=5101-5
S1=5101-5
b) S2=2101-2
Đặt \(A=2^0+2^1+..+2^{100}\)
\(\Rightarrow2A=2^1+2^2+..+2^{101}\)
lấy hiệu hai phương trình ta có
\(A=2^{101}-2^0=2^{101}-1\)
.\(B=5^1+5^2+..+5^{200}\)
\(\Rightarrow5B=5^2+5^3+..+5^{201}\)
Lấy hiệu hai phương trình ta có :
\(4B=5^{201}-5\Rightarrow B=\frac{5^{201}-5}{4}\)