K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1 2022

ĐKXĐ: \(x>\dfrac{1}{2}\)

\(log_{\dfrac{1}{2}}\left(\dfrac{x+1}{2x-1}\right)< 2\)

\(\Rightarrow\dfrac{x+1}{2x-1}>\dfrac{1}{4}\)

\(\Rightarrow x>-\dfrac{5}{2}\)

Kết hợp ĐKXĐ: \(\Rightarrow x>\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 1:

Để ý rằng \((2-\sqrt{3})(2+\sqrt{3})=1\) nên nếu đặt

\(\sqrt{2+\sqrt{3}}=a\Rightarrow \sqrt{2-\sqrt{3}}=\frac{1}{a}\)

PT đã cho tương đương với:

\(ma^x+\frac{1}{a^x}=4\)

\(\Leftrightarrow ma^{2x}-4a^x+1=0\) (*)

Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì pt trên phải có dạng pt bậc 2, tức m khác 0

\(\Delta'=4-m>0\Leftrightarrow m< 4\)

Áp dụng hệ thức Viete, với $x_1,x_2$ là hai nghiệm của pt (*)

\(\left\{\begin{matrix} a^{x_1}+a^{x_2}=\frac{4}{m}\\ a^{x_1}.a^{x_2}=\frac{1}{m}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a^{x_2}(a^{x_1-x_2}+1)=\frac{4}{m}\\ a^{x_1+x_2}=\frac{1}{m}(1)\end{matrix}\right.\)

Thay \(x_1-x_2=\log_{2+\sqrt{3}}3=\log_{a^2}3\) :

\(\Rightarrow a^{x_2}(a^{\log_{a^2}3}+1)=\frac{4}{m}\)

\(\Leftrightarrow a^{x_2}(\sqrt{3}+1)=\frac{4}{m}\Rightarrow a^{x_2}=\frac{4}{m(\sqrt{3}+1)}\) (2)

\(a^{x_1}=a^{\log_{a^2}3+x_2}=a^{x_2}.a^{\log_{a^2}3}=a^{x_2}.\sqrt{3}\)

\(\Rightarrow a^{x_1}=\frac{4\sqrt{3}}{m(\sqrt{3}+1)}\) (3)

Từ \((1),(2),(3)\Rightarrow \frac{4}{m(\sqrt{3}+1)}.\frac{4\sqrt{3}}{m(\sqrt{3}+1)}=\frac{1}{m}\)

\(\Leftrightarrow \frac{16\sqrt{3}}{m^2(\sqrt{3}+1)^2}=\frac{1}{m}\)

\(\Leftrightarrow m=\frac{16\sqrt{3}}{(\sqrt{3}+1)^2}=-24+16\sqrt{3}\) (thỏa mãn)

AH
Akai Haruma
Giáo viên
12 tháng 11 2017

Câu 2:

Nếu \(1> x>0\)

\(2017^{x^3}>2017^0\Leftrightarrow 2017^{x^3}>1\)

\(0< x< 1\Rightarrow \frac{1}{x^5}>1\)

\(\Rightarrow 2017^{\frac{1}{x^5}}> 2017^1\Leftrightarrow 2017^{\frac{1}{x^5}}>2017\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}> 1+2017=2018\) (đpcm)

Nếu \(x>1\)

\(2017^{x^3}> 2017^{1}\Leftrightarrow 2017^{x^3}>2017 \)

\(\frac{1}{x^5}>0\Rightarrow 2017^{\frac{1}{x^5}}>2017^0\Leftrightarrow 2017^{\frac{1}{5}}>1\)

\(\Rightarrow 2017^{x^3}+2017^{\frac{1}{x^5}}>2018\) (đpcm)

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

a:

ĐKXĐ: x+1>0 và x>0

=>x>0

=>\(log_2\left(x^2+x\right)=1\)

=>x^2+x=2

=>x^2+x-2=0

=>(x+2)(x-1)=0

=>x=1(nhận) hoặc x=-2(loại)

c: ĐKXĐ: x-1>0 và x-2>0

=>x>2

\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)

=>\(\Leftrightarrow x^2-3x+2=8\)

=>x^2-3x-6=0

=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)

24 tháng 5 2023

a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho 

\(\Leftrightarrow0< x^2+x-2< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)

Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)

b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)

Ta có:

 \(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)

\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)

\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)

\(\Leftrightarrow2x-1\ge0\)

Bất phương trình tương đương với:

\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)

Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\) A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1) 2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\) A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5) 3 tập nghiệm của bất pt...
Đọc tiếp

1 tập nghiệm S của bất pt \(4^{x+\frac{1}{2}}-5.2^x+2\le0\)

A S=\(\left\{-1;1\right\}\) B=[-1;1] C S= \(\) ( \(-\infty;-1\)] \(\cup\) [\(1;+\infty\) ) D S=(-1;1)

2 Tập nghiệm của bất pt \(log_6\left[x.\left(5-x\right)\right]< 1\)

A (0;2)\(\cup\) (3;5) B (2;3) C (0;5)\\(\left\{2;3\right\}\) D (0;3) \(\cup\) (3;5)

3 tập nghiệm của bất pt \(\left(\sqrt{6}-\sqrt{5}\right)^{x-1}\ge\left(\sqrt{6}+\sqrt{5}\right)^{2x-5}\)

4 tập nghiệm của bất pt \(\left(\frac{1}{3}\right)^{\sqrt{x+2}}>3^{-x}\)

A (2;+\(\infty\)) B (1;2) C (1;2] D [2;\(+\infty\) )

5 Giai bất pt \(\left(\frac{3}{4}\right)^{2x-1}\le\left(\frac{4}{3}\right)^{-2x+x}\)

A X\(\ge\)1 B X<1 C X\(\le\) 1 D x>1

6 bất pt \(log_4\left(x+7\right)>log_2\left(x+1\right)\) có tập nghiệm là

A (5;\(+\infty\) ) B (-1;2) C (2;4) D (-3;2)

7 Tìm số nghiệm nguyên dương của bất pt \(\left(\frac{1}{5}\right)^{x^2-2x}\ge\frac{1}{125}\)

8 f(x)=\(x.e^{-3x}\) . tập nghiệm của bất pt \(f^,\) (x)>0

A (0;1/3) B (0;1) C \(\left(\frac{1}{3};+\infty\right)\) D \(\left(-\infty;\frac{1}{3}\right)\)

9 biết S =[a,b] là tập nghiệm của bất pt \(3.9^x-10.3^x+3\le0\) . Tìm T=b-a

10 TẬP nghiệm của bất pt \(log_{\frac{1}{3}}\frac{1-2x}{x}>0\)

11 có bao nhiêu nghiệm âm lớn hơn -2021 của bất pt \(\left(2-\sqrt{3}\right)^x>\left(2+\sqrt{3}\right)^{x+2}\)

A 2019 B 2020 C 2021 D 2018

12 Biết tập nghiệm S của bất pt \(log_{\frac{\pi}{6}}\left[log_3\left(x-2\right)\right]>0\) là khoảng (a,b) . Tính b-a

13 tập nghiệm của bất pt \(16^x-5.4^x+4\ge0\)

14 nếu \(log_ab=p\)\(log_aa^2.b^4\)bằng

A 4p+2 B 4p+2a c \(a^2+p^4\) D \(p^4+2a\)

15 cho a,b là số thực dương khác 1 thỏa \(log_{a^2}b+log_{b^2}a=1\) mệnh đề nào đúng

A a=\(\frac{1}{b}\) B a=b C a=\(\frac{1}{b^2}\) D a=\(b^2\)

16 đặt \(2^a=\)3 , khi đó \(log_3\sqrt[3]{16}\) bằng

6
NV
2 tháng 7 2020

14.

\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)

15.

\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)

\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)

\(\Leftrightarrow log_a^2b-2log_ab+1=0\)

\(\Leftrightarrow\left(log_ab-1\right)^2=0\)

\(\Rightarrow log_ab=1\Rightarrow a=b\)

16.

\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)

\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)

NV
2 tháng 7 2020

11.

\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)

\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)

\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)

\(\Rightarrow\)\(-2+2020+1=2019\) nghiệm

12.

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)

\(\Rightarrow3< x< 5\Rightarrow b-a=2\)

13.

\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)

\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6