Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p là số nguyên tố > 3 => p lẻ
p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2
+) Xét p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố
Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố
=> d chia hết cho 3
+) Xét p = 3k + 2
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt
=> d chia hết cho 3
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
p là số nguyên tố > 3 => p lẻ
p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2
+) Xét p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố
Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố
=> d chia hết cho 3
+) Xét p = 3k + 2
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt
=> d chia hết cho 3
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
p là số nguyên tố lớn hơn 3 => p lẻ
p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2
+) Xét p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2 . ( 3m + 1 ) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố
=> d chia hết cho 3
+) Xét p = 3k + 2
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không phải số nguyên tố
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số nguyên tố
=> d chia hết cho 3
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
p là số nguyên tố > 3 => p lẻ
p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2
+) Xét p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố
Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố
=> d chia hết cho 3
+) Xét p = 3k + 2
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt
=> d chia hết cho 3
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6
p là số nguyên tố > 3 => p lẻ
p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2
+) Xét p = 3k + 1
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố
Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố
=> d chia hết cho 3
+) Xét p = 3k + 2
Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt
Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt
=> d chia hết cho 3
Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6