Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)+\left(-5+\frac{5}{2}-\frac{4}{3}\right)\)
\(=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}\)
\(=\left(3-2-5\right)+\left(\frac{1}{2}-\frac{5}{2}+\frac{5}{2}\right)-\left(\frac{2}{3}-\frac{2}{3}+\frac{4}{3}\right)\)
\(=-4-\frac{1}{2}\)
\(=-\frac{9}{2}\)
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
\(A=\left(3+\frac{1}{2}-\frac{2}{3}\right)-\left(2-\frac{2}{3}+\frac{5}{2}\right)+\left(-5+\frac{5}{2}-\frac{4}{3}\right)\)
\(A=3+\frac{1}{2}-\frac{2}{3}-2+\frac{2}{3}-\frac{5}{2}-5+\frac{5}{2}-\frac{4}{3}\)
\(A=\left(3-2-5\right)+\left(\frac{1}{2}-\frac{5}{2}+\frac{5}{2}\right)-\left(\frac{2}{3}-\frac{2}{3}+\frac{4}{3}\right)\)
\(A=-4+\frac{1}{2}-\frac{4}{3}\)
\(A=-\frac{29}{6}\)
a)Ta có:
\(A=4\frac{25}{16}+25\left(\frac{9}{16}:\frac{125}{64}\right):\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+25.\frac{36}{125}:\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+\frac{36}{5}:\frac{-27}{8}\)
\(\Rightarrow A=\frac{89}{16}+\frac{-32}{15}\)
\(\Rightarrow A=\frac{823}{240}\)
Vậy A=.....
b)Ta có:
\(C=\frac{2^3}{3.5}+\frac{2^3}{5.7}+\frac{2^3}{7.9}+...+\frac{2^3}{101.103}\)
\(\Rightarrow C=\frac{2^2.2}{3.5}+\frac{2^2.2}{5.7}+\frac{2^2.2}{7.9}+...+\frac{2^2.2}{101.103}\)
\(\Rightarrow C=2^2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{101.103}\right)\)
\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{101}-\frac{1}{103}\right)\)
\(\Rightarrow C=4\left(\frac{1}{3}-\frac{1}{103}\right)\)
\(\Rightarrow C=4.\frac{100}{309}\)
\(\Rightarrow C=\frac{400}{309}\)
Vậy C=.....
\(\Rightarrow A=4.\left[\frac{6}{2.\left(2.4\right)}+\frac{5}{\left(2.4\right).13}+\frac{3}{13.\left(4.4\right)}+\frac{2}{\left(4.4\right).18}+\frac{10}{18.\left(7.4\right)}\right]\)
\(=4.\left(\frac{6}{2.8}+\frac{5}{8.13}+\frac{3}{13.16}+\frac{2}{16.18}+\frac{10}{18.28}\right)=4.\left(\frac{1}{2}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{18}+\frac{1}{18}-\frac{1}{28}\right)\)
\(=4.\left(\frac{1}{2}-\frac{1}{28}\right)=4.\frac{13}{28}=\frac{13}{7}\)
\(B=\frac{\left[\frac{2}{3}\right]^3\cdot\left[-\frac{3}{4}\right]^2\cdot\left[-1\right]^5}{\left[\frac{2}{5}\right]^2\cdot\left[-\frac{5}{12}\right]^3}\)
\(=\frac{\frac{2^3}{3^3}\cdot\frac{\left[-3\right]^2}{4^2}\cdot\left[-1\right]}{\frac{2^2}{5^2}\cdot\frac{\left[-5\right]^3}{12^3}}\)
\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\cdot3\right]^3}}\)
\(=\frac{\frac{1}{3}\cdot\frac{1}{2}\cdot\left[-1\right]}{\frac{4}{25}\cdot\frac{-125}{\left[2^2\right]^3\cdot3^3}}\)
\(=\frac{\frac{1\cdot1\cdot\left[-1\right]}{3\cdot2\cdot1}}{\frac{4}{25}\cdot\frac{-125}{4^3\cdot3^3}}\)
\(=\frac{\frac{-1}{6}}{\frac{4}{25}\cdot\frac{-125}{64\cdot27}}=\frac{\frac{-1}{6}}{\frac{4}{1}\cdot\frac{-5}{64\cdot27}}\)
\(=\frac{\frac{-1}{6}}{4\cdot\frac{-5}{64\cdot27}}=\frac{\frac{-1}{6}}{-\frac{20}{64\cdot27}}=\frac{72}{5}\)
A= \(\frac{\left(5^4-5^3\right)^3}{125^3}=\frac{\left(625-125\right)^3}{1953125}=\frac{125000000}{1953125}=64\)
B=\(\frac{9^3}{\left(3^4-3^3\right)^2}=\frac{729}{2916}=\frac{1}{4}\)
\(Q=165+247+528+125+315\)
\(=\left(247+528+125\right)+\left(165+315\right)\)
\(=900+480\)
\(=1280\)
\(R=1000+200+30+4+5000+600+70+8+80\)
\(=\left(1000+5000\right)+\left(200+600\right)+\left(30+70+80\right)+\left(4+8+8\right)\)
\(=6000+800+180+20\)
\(=6000+\left(800+100\right)+\left(80+20\right)\)
\(=6000+900+100\)
\(=7000\)
4 2 . 25 2 + 32. 125 2 3 . 5 2 = 2 4 .5 4 + 2 5 .5 3 2 3 .5 2 = 2 4 .5 3 5 + 2 2 3 .5 2 = 2.5.7 = 70