K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 10 2023

Đề thiếu rồi. Bạn xem lại.

31 tháng 12 2015

hình như 3 sai rối thì phải

 

3 tháng 1 2016

x=15 

tớ làm rồi.

19 tháng 2 2019

Với mọi x ta có :

+) \(\left|x+\dfrac{1}{1.3}\right|\ge0; \)

+) \(\left|x+\dfrac{1}{3.5}\right|\ge0;\)

.....................................

+) \(\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Leftrightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+.......+\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Leftrightarrow50x\ge0\)

\(\Leftrightarrow x\ge0\)

Khi \(x\ge0\) ta được :

+) \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3}\)

+) \(\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5}\)

.............................................

+) \(\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\)

\(\Leftrightarrow\left(x+\dfrac{1}{1.3}\right)+\left(x+\dfrac{1}{3.5}\right)+......+\left(x+\dfrac{1}{97.99}\right)=50x\)

\(\Leftrightarrow49x+\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{97.99}\right)=50x\)

\(\Leftrightarrow x=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{97}-\dfrac{1}{99}\)

\(\Leftrightarrow x=\dfrac{16}{99}\)

Vậy...

29 tháng 12 2016

A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)

\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)

\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)

X=16

12 tháng 4 2017

17 - 1= 16

= > x = 16

 tk mình nha

10 tháng 3 2019

Đề thiếu à?

14 tháng 8 2017

X+(1/1.3+1/3.5+1/5.7+...+1/99.101)=100

X+(2/1.3+2/3.5+2/5.7+...+2/99.101)=100

X+(1 -1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)=100

X+(1-1/101)=100

X+100/101=100

X=100-100/101

X=10000/101

28 tháng 3 2017

b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)

Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)

Thay (1) vào đề bài:

\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)

\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)

\(\Rightarrow49x+\dfrac{16}{99}=50x\)

\(\Rightarrow x=\dfrac{16}{99}\)

Vậy \(x=\dfrac{16}{99}.\)

28 tháng 3 2017

thank bn nhìu nhìu vui

19 tháng 12 2015

=> \(2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(2.\left(1-\frac{1}{x+2}\right)=\frac{16}{34}\)

=>\(1-\frac{1}{x+2}=\frac{4}{17}\)

=> \(\frac{1}{x+2}=\frac{13}{17}\)

=>\(x=-\frac{9}{13}\)

6 tháng 10 2020

Bài này khá ez thôi: 

a) bạn sửa lại đề rồi làm theo cách làm của b,c,d nhé

b) Ta có: \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|\ge0\left(\forall x\right)\)

\(\Rightarrow5x\ge0\Rightarrow x\ge0\) khi đó:

\(PT\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)

\(\Leftrightarrow x=5\)

c,d tương tự nhé

6 tháng 10 2020

c,\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}+\right|+...+\left|x+\frac{1}{97.99}\right|\ge0\forall x\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)Khi đó:

\(x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)

\(\Rightarrow49x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=50x\)

\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{49}{99}\)