Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne\pm1\)
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}=\frac{x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}-\frac{x+1}{x^2-1}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow\text{ }2\left(x-1\right)+x\left(x+1\right)-(x+1)=0\)
\(\Leftrightarrow\text{ }2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1\text{ (loại)}\\x=-3\text{ (Chọn)}\end{cases}}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3\right\}\).
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}.\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)\(đk:x\ne\pm1\)
\(< =>\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left[\frac{7}{6}.\frac{6}{7}+\left(1\right)\right]x+1}{x^2-1}\)
\(< =>\frac{2x-2+x^2+x}{x^2+x-x-1}=\frac{2x+1}{x^2-1}\)\(< =>\frac{x^2+3x-2}{x^2-1}=\frac{2x-1}{x^2-1}\)
\(< =>x^2+2x-2=2x-1\)\(< =>x^2+2x-2x-2+1=0\)
\(< =>x^2-1=0< =>x^2=1\)\(< =>x=\pm1\)\(\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
\(\text{GIẢI :}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\).
\(\frac{1}{x}\left(\frac{x-1}{x+1}+\frac{2}{x+1}\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}\cdot\frac{x-1+2}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x\left(x+1\right)}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}-\frac{2}{3}=0\)
\(\Leftrightarrow\frac{3}{3x}-\frac{2x}{3x}=0\)
\(\Rightarrow\text{ }3-2x=0\)
\(\Leftrightarrow\text{ }2x=3\text{ }\Leftrightarrow\text{ }x=\frac{3}{2}\) (thỏa mãn ĐKXĐ)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\).
\(\frac{1}{x}\left(\frac{x-1}{x+1}+\frac{2}{x+1}\right)=\frac{2}{3}\)\(\left(đk:x\ne0;-1\right)\)
\(< =>\frac{1}{x}.\frac{x-1+2}{x+1}=\frac{2}{3}\)
\(< =>\frac{x+1}{x^2+x}=\frac{2}{3}\)
\(< =>3\left(x+1\right)=2\left(x^2+x\right)\)
\(< =>3x+3=2x^2+2x\)
\(< =>2x^2-x-3=0\)
Ta có : \(\Delta=\left(-1\right)^2-4.\left(2\right).\left(-3\right)=1+24=25\)
Vì delta > 0 nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{1+\sqrt{25}}{4}=\frac{1+5}{4}=\frac{3}{2}\)
\(x_2=\frac{1-\sqrt{25}}{4}=\frac{1-5}{4}=\frac{4}{4}=1\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;\frac{3}{2}\right\}\)
Giải :
\(\frac{x-1}{2}+\frac{x-1}{4}=1-\frac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2}+\frac{1}{4}+\frac{2}{3}\right)=1\)
\(\Leftrightarrow\left(x-1\right)\frac{17}{12}=1\)
\(\Leftrightarrow x-1=\frac{12}{17}\)
\(\Leftrightarrow x=\frac{29}{17}\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{29}{17}\right\}\).
\(\frac{x-1}{2}+\frac{x-1}{4}=1-\frac{2\left(x-1\right)}{3}\)
\(\Leftrightarrow\frac{x-1}{2}+\frac{x-1}{4}=1-\frac{2x-2}{3}\)
\(\Leftrightarrow\frac{6\left(x-1\right)}{12}+\frac{3\left(x-1\right)}{12}=\frac{12}{12}-\frac{4\left(2x-2\right)}{12}\)
\(\Leftrightarrow6\left(x-1\right)+3\left(x-1\right)=12-4\left(2x-2\right)\)
\(\Leftrightarrow6x-6+3x-3=12-8x+8\)
\(\Leftrightarrow6x+3x+8x=12+8+6+3\)
\(\Leftrightarrow17x=29\)
\(\Leftrightarrow x=\frac{29}{17}\)
Vậy phương trình có nghiệm x=29/17
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x=0
<=> x=0
Vậy x=0
+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)
\(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)
\(\Rightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x.\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{0,6\right\}\)
+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)
\(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1+2x-2=3x^2\)
\(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)
\(\Leftrightarrow-2x^2+3x-1=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)
Vậy \(S=\left\{\frac{1}{2}\right\}\)
\(\frac{\left(x-2\right)^2}{12}-\frac{\left(x+1\right)^2}{21}=\frac{\left(x-4\right)\left(x-6\right)}{28}\)
<=> \(\frac{7\left(x^2-4x+4\right)}{84}-\frac{4\left(x^2+2x+1\right)}{84}=\frac{3\left(x^2-10x+24\right)}{84}\)
<=> 7x2 - 28x + 28 - 4x2 - 8x - 4 = 3x2 - 30x + 72
<=> 3x^2 - 36x - 3x^2 + 30x = 72 - 24
<=> -6x = 48
<=> x = -8
Vậy S = {-8}
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)
\(\Leftrightarrow\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x}{2\left(x+1\right)\left(x-3\right)}+\frac{x^2-3x}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x+1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x^2-6x}{2\left(x+1\right)\left(x-3\right)}=\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2x}{2\left(x+1\right)}=0\)
=> 2x=0
=> x=0(tmđk)
Vậy x=0 là nghiệm của phương trình
ĐKXĐ: \(x\ne\pm2\)
\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(9x+4\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(3x-2\right)+1}{\left(x+2\right)\left(x-2\right)}\)
\(\Leftrightarrow x+2-6x^2-12x+9x^2-18x+4x-8=3x^2-2x+1\)
\(\Leftrightarrow-23x=7\)
\(\Leftrightarrow x=\frac{-7}{23}\left(tm\right)\)
Vậy: \(S=\left\{-\frac{7}{23}\right\}\)
=.= hk tốt!!
Giải :
\(\text{ĐKXĐ}\: :\: x\ne\pm2\)
\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
\(\Leftrightarrow\frac{\left(1-6x\right)\left(x+2\right)+\left(9x+4\right)\left(x-2\right)}{x^2-4}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
Khử mẫu : \(\left(-6x^2-12x+x+2\right)+\left(9x^2-18x+4x-8\right)=3x^2-2x+1\)
\(\Leftrightarrow-23x=7\Leftrightarrow x=\frac{7}{23}\).
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne1,\text{ }x\ne-2\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=\frac{x\left(x-1\right)}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=x+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Rightarrow2\left(x+2\right)+\left(x-1\right)=0\)
\(\Leftrightarrow2x+4+x-1\)
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3x=\text{-3}\Leftrightarrow x=\text{-1}\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1\right\}\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(-x\right)\left(đk:x\ne1;-2\right)\)
\(\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x\left(x-1\right)}{x-1}-x\)
\(< =>\frac{2x+4+x-1}{\left(x-1\right)\left(x+2\right)}=x-x=0\)
\(< =>2x+4+x-1=0\)
\(< =>3x=1-4=-3\)
\(< =>x=\frac{-3}{3}=-1\left(tmđk\right)\)
Vậy nghiệm của phương trình trên là \(\left\{-1\right\}\)