K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

*với y=0 => để x+y nhỏ nhất <=> x nhỏ nhất => A^2 nhỏ nhất
mà A^2= 65+ 2^x
=> A^2 lẻ 
=> A^2= 81 => 2^x=16 => x=4 
khi đó x+y=4
*với x=0, lập luận tương tự => A^2= 65+ 8^y
+, A^2=81 => 8^y=16 => ko có y...
+, A^2=121 => 8^y=56 => ko có
+, A^2=169 => 8^y=104 => ko có...
(đến đây ko xét A^2 nữa vì nếu thỏa mãn thì x+y nhỏ nhất cũng =4)
+, với y khác 0 => A^2 chẵn mặt khác 2^x < 2^3y với x;y khác 0 và x+y<4 
=> để x+y nhỏ nhất <=> x nhỏ nhất và y lớn nhất 
tức y thuộc {1;2} và x thuộc {0;1}
=> 64<A^2 < 64+64+2=130
=> A^2=100 => 2^x+8^y= 36 => y=1 => 2^x=28 => loại
vậy...

28 tháng 6 2019

Câu hỏi của Trần Đại Nghĩa - Toán lớp 6 - Học toán với OnlineMath

Tham khảo bài của cô Chi nhé

30 tháng 6 2018

1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy GTNN của A = -8 khi x=0, y=2.

b) Ta có: \(B=|x-3|+|x-7|\)

\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)

Vậy GTNN của B = 4 khi \(3\le x\le7\)

2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)

\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)

b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)

Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:

\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)

Bài 3: đề không rõ.

30 tháng 6 2018

Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)

Có \(x^4\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow A\ge0+0-8=-8\)

Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)

\(b,B=\left|x-3\right|+\left|x-7\right|\)

\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)

\(\Rightarrow B\ge\left|x-3+7-x\right|\)

\(\Rightarrow B\ge\left|-10\right|=10\)

Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)

25 tháng 6 2019

gì vậy

25 tháng 6 2019

câu hỏi hay chắc cần dùng đến IQ😀

26 tháng 6 2019

Ta có: \(2^6< 2^6+2^x+2^{3y}=A^2< 10000\)

=> \(8^2< 2^6+2^x+2^{3y}=A^2< 100^2\)

Vì A thuộc N.

Xét trường hợp: \(2^6+2^x+2^{3y}=9^2\)

=> \(2^x+2^{3y}=17\)là số lẻ

Do x, y thuộc N nên xảy  ra hai trường hợp hoặc là x=0, hoặc là y=0

+) Với x=0

ta có: \(1+2^{3y}=17\Leftrightarrow2^{3y}=16=2^4\Leftrightarrow3y=4\Leftrightarrow y=\frac{4}{3}\)( loại vì y là số tự nhiên)

+) Với y=0

ta có: \(2^x+1=17\Leftrightarrow2^x=16=2^4\Leftrightarrow x=4\)(tm)

Khi đó x+y=4

Mà đề bài bảo tìm giá trị nhỏ nhất của x+y, x, y thuộc N

Xét các trường hợp : 

+) y=0, x<4 loại

+) y=1, x<3 loại

+) y=2, x=0 => \(2^6+2^0+2^6=129\)( loại vì ko p là số chính phương)

 +) y=2, x=1 => \(2^6+2+2^6=130\)(loại)

 +) y=3, x=0 => \(2^6+2^0+2^9=577\) ( loại)

Vậy giá trị nhỏ nhất cần tìm là x+y=4

4 tháng 7 2021

a) Ta có:

\(\frac{9}{x}=\frac{y}{5}\Rightarrow xy=45\)

Mà \(45=5.9=9.5=\left(-5\right)\left(-9\right)=\left(-9\right)\left(-5\right)\)

Vậy x=1;y=2 hoặc x=2;y=1 hoặc x=-1;y=-2 hoặc x=-2;y=-1

b)  Ta có: \(\frac{n+1}{n-1}=\frac{\left(n-1\right)+2}{n-1}=1+\frac{2}{n-1}\left(n\ne1\right)\)

Để A nguyên \(\Leftrightarrow\frac{2}{n-1}\) nguyên

\(\Leftrightarrow n-1\inƯ\left(2\right)=\left\{-1;-2;0;1;2\right\}\)

\(\Rightarrow n\in\left\{-1;0;2;3\right\}\)

c) Gọi abcd là số cần tìm

Ta có: a: 6 cách

b: 5 cách

c: 4 cách

d: 3 cách

==> có> 6.5.4.3=360 số có 4 chữ số khác nhau được lập nên từ các chữ số đã cho

4 tháng 7 2021

Ai giúp tui ik đang cần gấp :<