Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 321 - 319 = 319 . 32 - 319
= 319 . ( 32 - 1 )
= 319 . ( 9 - 1 )
= 319 . 8 chia hết cho 8
b) 321 + 319 = 319 . 32 + 319
= 319 . ( 32 + 1 )
= 319 . ( 9 + 1 )
= 319 . 10 chia hết cho 10
Nhớ tích nha bạn
Giải
A = (2 + 22) + (23 + 24 ) +…(2199 + 2200)
A = 6 + 22 (2 + 22 ) +… + 2198 (2 + 22)
A = 6 + 22 (6 ) +… + 2198 (6)
A = 6(1 + 22 +… + 2198)
Vậy A chia hết cho 6
Giải;
A = (22 + 24) + (26 + 28) + … (219 + 220)
A = 20 + 24 (22 + 24) + … 216 (22 + 24)
A = 20 + 24 (20) + … 216 (20)
A = 20(1 + 24 + … 216)
A = 5.4.(1 + 24 + … 216)
Vậy A chia hết cho 5 và 4.
Bài 2: Vì x \(\in\) N nên ta có bảng giá trị sau :
x-2 | 1 | 12 | 4 | 3 | 2 | 6 |
x | 3 | 14 | 6 | 5 | 4 | 8 |
2y+1 | 12 | 1 | 3 | 4 | 6 | 2 |
y | loại | 0 | 1 | loại | loại | loại |
Vậy (x ; y) \(\in\) {(14 ; 0) ; (6 ; 1)}
Bài giải:
1/ 7^(2x-1) -7^6. 3=7^6.4
7^(2x-1) =7^6.4 +7^6. 3
7^(2x-1) =7^6.(4+3)
7^(2x-1) =7^6.7
7^(2x-1) =7^7
2x-1=7
2x=7+1
2x=8
x=4
2/ (x-2).(2y+1)=12 vì x,y E N => x-2 và 2y+1 cũng E N ; 2y +1 là 1 số lẻ
* 12 =12.1=4.3 ( để có 1 số lẻ vì 2y +1 là 1 số lẻ )
th1: x-2=12 và 2y+1=1
x-2=12 =>x=14
2y+1=1 =>2y=0 =>y=0
th2 x-2=4 và 2y+1 =3
x-2 =4=>x=6
2y+1=3 =>2y=2 =>y=1
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
9 < 3x \(\le\) 243
=> 32 < 3x \(\le\) 35
=> 2 < x \(\le\) 5
=> x = 3;4;5
Ta có: \(S=1+3^1+3^2+3^3+...+3^{2017}+3^{2018}\)
\(=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{2016}+3^{2017}+3^{2018}\right)\)
\(=13+3^3\cdot13+...+3^{2016}\cdot13\)
\(=13\cdot\left(1+3^3+...+3^{2016}\right)⋮13\)(đpcm)