K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2020

ta có:

(-2)300=(-2)100=(-8)100

3200=(32)100=9100

vì (-8)100< 9100 hay (-2)300< 3200

15 tháng 7 2018

\(2^{300}=\left(2^3\right)^{100}=8^{100}\)

\(3^{200}=\left(3^2\right)^{100}=9^{100}\)

Vì 8 < 9 nên \(8^{100}< 9^{100}\)Hay \(2^{300}< 3^{200}\)

Vậy ....

Ta có : 2300 = (23)100 = 8100

3200 = (32)100 = 9100

Vì 8100 < 9100 nên 2300 < 3200

10 tháng 2 2020

 (x-1)200+(y+2)300=0 

(x-1)^200 > 0 ; (y+2)^300>0

=> (x-1)^200 = 0 và (y + 2)^300 = 0

=> x - 1 = 0 và y + 2 = 0

=> x = 1 và y = - 2

thay vào rồi tính như bình thường thôi

10 tháng 2 2020

Vì \(\left(x-1\right)^{200}\ge0\forall x\)\(\left(y+2\right)^{300}\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)

mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:

\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)

\(=2+40+4=46\)

4 tháng 10 2015

Ta có :

3.2410=3.(3.23)10=311.230=311.415<415.415=430

=> 230+330+430>3.2410

4 tháng 10 2015

2^30+3^30+4^30 = 4^15+27^10+64^10> 4^15+24^10+2.24^10> 3.24^10

+)\(8^2=\left(2^3\right)^2=2^6\)

+)\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)

\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)

Vì \(9>8\Rightarrow9^{100}>8^{100}\)hay \(3^{200}>2^{300}\)

+)\(9^{20}=\left(3^2\right)^{20}=3^{40}\)

\(27^{13}=\left(3^3\right)^{13}=3^{39}\)

Vì \(40>39\Rightarrow3^{40}>3^{39}\)hay \(9^{20}>27^{13}\)

+)\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}\)

\(2^{100}=2^{10.10}=\left(2^{10}\right)^{10}=1024^{10}\)

Vì \(100< 1024\Rightarrow100^{10}< 1024^{10}\)hay \(10^{20}< 2^{100}\)

+)\(2^{161}=2^{4.40+1}=\left(2^4\right)^{40}.2=16^{40}.2\)

Vì \(13< 16\Rightarrow13^{40}< 16^{40}\)\(\Rightarrow13^{40}< 2^{161}\)

12 tháng 7 2019

 Ta có: P = 2(x + y6) - 3(x4 + y4)

 P = 2(x2 + y2)(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2.1.(x4 - x2y2 + y4) - 3x4 - 3y4

P = 2x4 - 2x2y2 + 2y4 - 3x4 - 3y4

P = (2x4 - 3x4) - 2x2y2 + (2y4 - 3y4)

P = -x4 - 2x2y2 - y4

P = -(x4 + 2x2y2 + y4)

P = -(x2 + y2)2

P = -12 = -1

=> Biểu thức P ko phụ thuộc vào x với x2 + y2 = 1