Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2006}\right)\)
\(A=\left(1-\frac{1}{\frac{\left(1+2\right).2}{2}}\right)\left(1-\frac{1}{\frac{\left(1+3\right).3}{2}}\right)...\left(1-\frac{1}{\frac{\left(1+2006\right).2006}{2}}\right)\)
\(A=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}...\frac{2007.2006-2}{2006.2007}=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}....\frac{2007.2006-2}{2006.2007}\) (1)
xét thấy:2007.2006-2=2006.(2008-1)+2006-2008=2006.(2008-1+1)-2008=2008.(2006-1)=2008.2005 (2)
(1),(2)\(=>A=\frac{4.1}{2.3}.\frac{5.2}{3.4}.\frac{6.3}{4.5}....\frac{2008.2005}{2006.2007}\)
\(A=\frac{\left(4.5.6...2008\right)\left(1.2.3...2005\right)}{\left(2.3.4....2006\right)\left(3.4.5...2007\right)}=\frac{2008}{2006.3}=\frac{1004}{3009}\)
Vậy A=1004/3009
a) Vì \(\left|x\left(x^2-3\right)\right|\ge0\) nên \(x\ge0\)
Ta có : |x(x2 - 3)| = x
<=> x(x2 - 3) = x <=> x2 - 3 = x : x = 1 <=> x2 = 4
Vì x \(\ge\) 0 nên x = 2
\(A=\left(\frac{1-\left(\sqrt{a}\right)^3}{1-\sqrt{a}}\right)\left(\frac{1-\sqrt{a}}{1-\left(\sqrt{a}\right)^2}\right)^2\)
\(=\left(1+\sqrt{a}+a\right).\frac{1}{\left(1+\sqrt{a}\right)^2}\)
\(=\frac{1+\sqrt{a}+a}{1+2\sqrt{a}+a}\)
Câu 1 :
Đk: \(x\ge1\)
\(\sqrt{x-1}+\sqrt{2x-1}=5\\ \Leftrightarrow x-1+2\sqrt{\left(x-1\right)\left(2x-1\right)}+2x-1=25\\ \Leftrightarrow2\sqrt{2x^2-3x+1}=27-3x\\ \)
\(\Leftrightarrow\begin{cases}27-3x\ge0\\4\left(2x^2-3x+1\right)=9x^2-162x+729\end{cases}\) \(\Leftrightarrow\begin{cases}x\le9\\x^2-150x+725=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\le9\\x=145hoặcx=5\end{cases}\)
với x= 5 thoản mãn điều kiện, x=145 loại
Vậy \(S=\left\{5\right\}\)
ĐK: \(x\ge3\)
ta có:
\(\log_5^{\left(x+5\right)^{\frac{1}{2}}}+\log_5^{\sqrt{x-3}}=\log_5^{\sqrt{2x+1}}\Rightarrow\log_5^{\sqrt{\left(x+5\right)\left(x-3\right)}}=\log_5^{\sqrt{2x+1}}\)
suy ra \(\sqrt{\left(x+5\right)\left(x-3\right)}=\sqrt{2x+1}\Rightarrow\left(x+5\right)\left(x-3\right)=2x+1\Leftrightarrow x^2+2x-15=2x+1\Leftrightarrow x^2=16\Rightarrow x=\pm4\)
mà \(x\ge3\)
suy ra x=4 là nghiệm của pt
a) ĐK: \(x\ge0,x\ne1,x\ne\frac{1}{4}\)
\(A=1+\left(\frac{2x+\sqrt{x}-1}{1-x}-\frac{2x\sqrt{x}-\sqrt{x}+x}{1-x\sqrt{x}}\right)\frac{x-\sqrt{x}}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1+\left[\frac{2\sqrt{x}-1}{1-\sqrt{x}}-\frac{\sqrt{x}\left(2\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}\right]\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}-1}\)
\(A=1-\sqrt{x}+\frac{x\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)
\(A=\frac{x+1}{x+\sqrt{x}+1}\)
Để \(A=\frac{6-\sqrt{6}}{5}\Rightarrow\frac{x+1}{x+\sqrt{x}+1}=\frac{6-\sqrt{6}}{5}\)
\(\Rightarrow5x+5=\left(6-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+6-\sqrt{6}\)
\(\Rightarrow\left(1-\sqrt{6}\right)x+\left(6-\sqrt{6}\right)\sqrt{x}+1-\sqrt{6}=0\)
\(\Rightarrow x-\sqrt{6}.\sqrt{x}+1=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{\sqrt{2}+\sqrt{6}}{2}\\\sqrt{x}=\frac{-\sqrt{2}+\sqrt{6}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{cases}}\left(tmđk\right)\)
b) Xét \(A-\frac{2}{3}=\frac{x+1}{x+\sqrt{x}+1}-\frac{2}{3}=\frac{3x+3-2x-2\sqrt{x}-2}{3\left(x+\sqrt{x}+1\right)}\)
\(=\frac{x-2\sqrt{x}+1}{3\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}\)
Do \(x\ge0,x\ne1,x\ne\frac{1}{4}\Rightarrow\left(\sqrt{x}-1\right)^2>0\)
Lại có \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)+\frac{3}{4}>0\)
Nên \(A-\frac{2}{3}>0\Rightarrow A>\frac{2}{3}\).
\(x=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{4}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{8}\right)\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.\frac{9}{10}=\frac{63}{256}< \frac{63}{210}=0,3\)
\(x=\sqrt{0,1}>\sqrt{0,09}=0,3\)
=> y<x