K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2018

\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)

\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)

\(A=1.199+1.195+...+3.1\)

\(A=3+7+...+195+199\)

Tổng A có: \(\frac{199-3}{4}+1=50\)( số hạng)

\(\Rightarrow A=\frac{\left(199+3\right).50}{2}=5050\)

Mấy ý kia chốc về lm nốt 

13 tháng 10 2018

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)

\(B=\left(2^8-1\right)...\left(2^{64}+1\right)+1\)

\(B=2^{64}-1+1\)

\(B=2^{64}\)

27 tháng 1 2020

Khó vl , dẹp mẹ điiii

27 tháng 1 2020

a)     \(A=\left(\frac{1}{4}x-y\right)\left(x^2+4xy+16y^2\right)+4\left(4y^3-\frac{1}{16}x^3+1\right)\)

\(\Leftrightarrow A=\frac{1}{4}\left(x-4y\right)\left(x^2+4xy+16y^2\right)+16y^3-\frac{1}{4}x^3+4\)

\(\Leftrightarrow A=\frac{1}{4}\left(x^3-64y^3\right)+16y^3-\frac{1}{4}x^3+4\)

\(\Leftrightarrow A=\frac{1}{4}x^3-16y^3+16y^3-\frac{1}{4}x^3+4\)

\(\Leftrightarrow A=4\)

b) \(B=2x\left(x-4\right)^2-\left(x+5\right)\left(x-2\right)\left(x+2\right)+2\left(x-5\right)^2-\left(x-1\right)^2\)

\(\Leftrightarrow B=2x\left(x^2-8x+16\right)-\left(x+5\right)\left(x^2-4\right)+2\left(x^2-10x+25\right)-\left(x^2-2x+1\right)\)

\(\Leftrightarrow B=2x^3-16x^2+32x-x^3-5x^2+4x+20+2x^2-20x+50-x^2+2x-1\)

\(\Leftrightarrow B=x^3-20x^2+18x+69\)

c) \(C=\frac{80x^3-125x}{3\left(x-3\right)-\left(x-3\right)\left(8-4x\right)}\)

\(\Leftrightarrow C=\frac{5x\left(16x^2-25\right)}{\left(x-3\right)\left(3-8+4x\right)}\)

\(\Leftrightarrow C=\frac{5x\left(4x-5\right)\left(4x+5\right)}{\left(x-3\right)\left(4x-5\right)}\)

\(\Leftrightarrow C=\frac{5x\left(4x+5\right)}{x-3}\)

\(\Leftrightarrow C=\frac{20x^2+25x}{x-3}\)

d) \(D=\frac{\left(a-b\right)\left(c-d\right)}{\left(b^2-a^2\right)\left(d^2-c^2\right)}\)

\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a^2-b^2\right)\left(c^2-d^2\right)}\)

\(\Leftrightarrow D=\frac{\left(a-b\right)\left(c-d\right)}{\left(a-b\right)\left(a+b\right)\left(c-d\right)\left(c+d\right)}\)

\(\Leftrightarrow D=\frac{1}{\left(a+b\right)\left(c+d\right)}\)

Chúc bạn học tốt !

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)

câu b:(x-1)(x+2)(x+3)(x+6) 
= (x-1)(x+6)(x+2)(x+3) 
= (x.x + 5.x - 6)(x.x + 5.x + 6) 
đặt x.x + 5.x = t 
=> (t -6)(t+6) 
= t.t - 36 
ta có: 
t.t >= 0 
suy ra t.t - 36 >= -36 
vậy min = -36 
dấu "=" xảy ra chỉ khi t.t = 0 
chỉ khi x.x + 5.x = 0 
chỉ khi x=0 hoặc x=-5

a) Ta có: A= 4x^2 + 4x + 11 = 4x^2 + 4x + 1 + 10

= (2x+1)^2 + 10 >= 10. A đạt giá trị nhỏ nhất = 10 khi x=-1/2 

12 tháng 10 2018

Mk lm câu c nhé, câu a và b bn tham khảo của ngô thế trường

\(c,C=x^2-2x+y^2-4y+7\)

\(C=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)

\(C=\left(x-1\right)^2+\left(y-2\right)^2+2\)

Vì \(\left(x-1\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

\(2>0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\Rightarrow x=1\\\left(y-2\right)^2=0\Rightarrow y=2\end{cases}}\)

Vậy \(minC=2\Leftrightarrow x=1;y=2\)

hok tốt!

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

30 tháng 11 2015

\(a.\) Với  \(a+b+c=0\)  thì  \(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

\(b.\)   Công thức tổng quát:  \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Ta có:

\(\frac{1}{x\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

\(\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{x+1}-\frac{1}{x+2}\)

\(\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+2}-\frac{1}{x+3}\)

\(\frac{1}{\left(x+3\right)\left(x+4\right)}=\frac{1}{x+3}-\frac{1}{x-4}\)

\(\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+4}-\frac{1}{x+5}\)

Do đó, suy ra được:  \(A=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

 

 

30 tháng 10 2019

Cần cù bù thông minh.

a

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)

\(=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

b

\(\left(a+b+c\right)^2+a^2+b^2+c^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2+2ac+a^2\right)\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\)

28 tháng 1 2016

b)      \(3x^2-10x+8=0\)

\(\Leftrightarrow\left(3x^2-4x\right)-\left(6x-8\right)=0\)

\(\Leftrightarrow x\left(3x-4\right)-2\left(3x-4\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(x-2\right)=0\)

đến đây bn tự giải típ nhé. Phương trình tích