Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Do a+b+c =0 nên => a+b = (-c) => \(\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)
\(=>a^2+b^2-c^2=-2ab\)
Làm tương tự trên ta có : \(b^2-c^2-a^2=2ac;\)
\(a^2-b^2-c^2=2bc;\)
\(=>T=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Với a+b+c = 0 thì \(a^3+b^3+c^3=3abc\) (bạn tự chứng minh hằng đẳng thức mở rộng nhé);
\(=>T=\dfrac{3abc}{2abc}=\dfrac{3}{2}=1,5\)
CHÚC BẠN HỌC TỐT.....
1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}=a+b+c\)
\(\Leftrightarrow\dfrac{abc}{a^2}+\dfrac{abc}{b^2}+\dfrac{abc}{c^2}=a+b+c\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{a+b+c}{abc}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)
\(\Leftrightarrow\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\left(\dfrac{1}{c}-\dfrac{1}{a}\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Thay vào A r tính thôi
VP = \(\dfrac{\left(a-b\right)^2}{\left(a+c\right)\left(b+c\right)}+\dfrac{\left(b-c\right)^2}{\left(b+a\right)\left(c+a\right)}+\dfrac{\left(c-a\right)^2}{\left(c+b\right)\left(a+b\right)}\)
\(=\left(a-b\right).\dfrac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\left(b-c\right).\dfrac{\left(b+a\right)-\left(c+a\right)}{\left(b+a\right)\left(c+a\right)}+\left(c-b\right).\dfrac{\left(c+b\right)-\left(a+b\right)}{\left(c+b\right)\left(a+b\right)}\)
\(=\left(a-b\right).\left(\dfrac{1}{b+c}-\dfrac{1}{a+c}\right)+\left(b-c\right)\left(\dfrac{1}{c+a}-\dfrac{1}{b+a}\right)+\left(c-a\right).\left(\dfrac{1}{a+b}-\dfrac{1}{c+b}\right)\)
\(=\left(a-b\right).\dfrac{1}{b+c}-\left(a-b\right).\dfrac{1}{a+c}+\left(b-c\right).\dfrac{1}{c+a}-\left(b-c\right).\dfrac{1}{b+a}+\left(c-a\right).\dfrac{1}{a+b}-\left(c-a\right).\dfrac{1}{c+b}\)
\(=\left(2a-b-c\right).\dfrac{1}{b+c}+\left(2b-c-a\right).\dfrac{1}{c+a}+\left(2c-a-b\right).\dfrac{1}{a+b}\)
\(=\dfrac{2a}{b+c}-\left(b+c\right).\dfrac{1}{b+c}+\dfrac{2b}{c+a}-\left(c+a\right).\dfrac{1}{c+a}+\dfrac{2c}{a+b}-\left(a+b\right).\dfrac{1}{a+b}\)
\(=2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)-3\left(đpcm\right)\)
\(VT=\dfrac{2a^3-a^2b-a^2c-ab^2-ac^2+2b^3-b^2c-bc^2+2c^3}{(a+b)(b+c)(c+a)} \)
\(\\=\dfrac{a^3+a^2b-2a^2b-2ab^2+ab^2+b^3+b^3+b^2c-2b^2c-2bc^2+bc^2+c^3+c^3+c^2a-2c^a+2ca^2-ca^2+a^3}{(a+b)(b+c)(c+a)}\)
\(\\=\dfrac{(a-b)^2(a+b)+(b-c)^2(b+c)+(c-a)^2(c+a)}{(a+b)(b+c)(c+a)}\)
\(\dfrac{-a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left(b-a\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=-\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-c\right)\left[-\left(a-b\right)\right]}+\dfrac{c^2}{-\left(a-c\right)\left[-\left(b-c\right)\right]}\)
\(=\dfrac{-a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\\ =\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{\left(a^2-ac-ab+bc\right)\left(b-c\right)}\)
\(=\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{a^2b-a^2c-abc+ac^2-ab^2+abc+b^2c-bc^2}\)
\(=\dfrac{-a^2b+a^2c-ab^2+b^2c+ac^2-bc^2}{a^2b-a^2c+ac^2-ab^2+b^2c-bc^2}\)
\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)
\(=\dfrac{\left(ab+bc+ca\right)^2-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)}{abc}\)
\(=2\left(a+b+c\right)\)
cầm cm cái này trước đã
\(\dfrac{1}{a-b}-\dfrac{1}{a-c}=\dfrac{a-c}{a-b}+\dfrac{a-b}{a-c}=\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}\)
áp dụng vào bài
\(=>\left\{{}\begin{matrix}\dfrac{b-c}{\left(a-b\right)\left(a-c\right)}=\dfrac{1}{a-b}-\dfrac{1}{a-c}\\\dfrac{c-a}{\left(b-c\right)\left(b-a\right)}=\dfrac{1}{b-c}-\dfrac{1}{b-a}\\\dfrac{a-b}{\left(c-a\right)\left(c-b\right)}=\dfrac{1}{c-a}-\dfrac{1}{c-b}\end{matrix}\right.\)
thay vào đề,
=> đpcm
chúc may mắn
Ta có \(\dfrac{2}{a-b}\)+\(\dfrac{2}{b-c}\)+\(\dfrac{2}{c-a}\)
= (\(\dfrac{1}{a-b}\)+\(\dfrac{1}{c-a}\))+(\(\dfrac{1}{b-c}\)+\(\dfrac{1}{a-b}\))+(\(\dfrac{1}{c-a}\)+\(\dfrac{1}{b-c}\))
=(\(\dfrac{1}{a-b}\)- \(\dfrac{1}{a-c}\))+(\(\dfrac{1}{b-c}\)- \(\dfrac{1}{b-a}\))+(\(\dfrac{1}{c-a}\) - \(\dfrac{1}{c-b}\))
=\(\dfrac{\left(a-c\right)-\left(a-b\right)}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{\left(b-a\right)-\left(b-c\right)}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{\left(c-b\right)-\left(c-a\right)}{\left(c-b\right).\left(c-a\right)}\)
= \(\dfrac{a-c-a+b}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{b-a-b+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{c-b-c+a}{\left(c-b\right).\left(c-a\right)}\)
= \(\dfrac{-c+b}{\left(a-b\right).\left(a-c\right)}\)+ \(\dfrac{-a+c}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{-b+a}{\left(c-b\right).\left(c-a\right)}\)
= \(\dfrac{b-c}{\left(a-b\right).\left(a-c\right)}\)+\(\dfrac{c-a}{\left(b-a\right).\left(b-c\right)}\)+\(\dfrac{a-b}{\left(c-b\right).\left(c-a\right)}\)
Chúc bạn học tốt.