Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
a) Ta có: \(A=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{\sqrt{2x}-x-1}{\sqrt{x}-1}\)
\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1-2\sqrt{x}+x}{1-\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}.\frac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\)
\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)
\(=1^2-\left(\sqrt{x}\right)^2=1-x\).
Vậy \(A=1-x\).
b) Ta có: \(A=1-x\)
Để \(A>0\)\(\Rightarrow1-x>0\Rightarrow1-0>x\Rightarrow1>x\Rightarrow x< 1.\)
Vậy để A > 0 thì x < 1.
Chúc bn hc tốt!
a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )
b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)
\(=6-3b\) (vì b < 2 )
b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\)
\(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(=\left[\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(x-1\right)^2}{2}\)
\(=\left[\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2.\left(\sqrt{x}+1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}.\left(\sqrt{x}-1\right)}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}\)
b) Với \(0< x< 1\)\(\Rightarrow0< \sqrt{x}< 1\)
\(\Rightarrow\sqrt{x}-1< 0\)
mà \(\sqrt{x}>0\)\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-1\right)< 0\)
\(\Rightarrow-\sqrt{x}.\left(\sqrt{x}-1\right)>0\)\(\Rightarrow P>0\)( đpcm )
c) \(P=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)
\(=-\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)
\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\)\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\)\(\Leftrightarrow x=\frac{1}{4}\)( thỏa mãn ĐKXĐ )
Vậy \(maxP=\frac{1}{4}\)\(\Leftrightarrow x=\frac{1}{4}\)
ĐKXĐ \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
a, Ta có \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right).\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{2}}\right)^2\)
\(P=\frac{2\sqrt{x}-2x}{\sqrt{2}}\)
\(P=\sqrt{2x}-\sqrt{2}x\)
\(P=\sqrt{2x}\left(1-\sqrt{x}\right)\)
b, Vì \(0< x< 1\Rightarrow\sqrt{x}< 1\Rightarrow1-\sqrt{x}< 1\)
\(\Rightarrow\sqrt{2x}\left(1-\sqrt{x}\right)>0\)
c, Ta có \(P=-\sqrt{2}\left(x-\sqrt{x}\right)\)
\(P=-\sqrt{2}\left(x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)
\(P=-\sqrt{2x}\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{\sqrt{8}}\le\frac{1}{\sqrt{8}}\)
Dấu = xảy ra \(\Leftrightarrow\)\(\sqrt{x}-\frac{1}{2}=0\)
\(\Rightarrow x=\frac{1}{4}\)
vậy GTLN của P là \(\frac{1}{\sqrt{8}}\)với x=\(\frac{1}{4}\)
a) DKXD: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
P=\(\left(\dfrac{a-1}{2\sqrt{a}}\right)^2.\left(\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\\ =\dfrac{\left(a-1\right)^2}{4a}.\left(\dfrac{\left(\sqrt{a}-1-\sqrt{a}-1\right)\left(\sqrt{a}-1+\sqrt{a}+1\right)}{a-1}\right)\)
= \(\dfrac{a-1}{4a}.\dfrac{-2.2\sqrt{a}}{1}\)
= \(\dfrac{1-a}{\sqrt{a}}\)
b) P<0 với a ∈ DKXD
=> \(\dfrac{1-a}{\sqrt{a}}< 0\)
mà √a > 0 với ∀a ∈ DKXD
=> 1-a < 0
<=> a>1 ( thoả mãn DKXD)
Vậy để P<0 thì a>1.
c) Để P = 2 với a ∈ DKXD
=> \(\dfrac{1-a}{\sqrt{a}}=2\)
<=> 1-a = 2√a
<=> a + 2√a -1 = 0
<=> \(\left[{}\begin{matrix}\sqrt{a}=-1+\sqrt{2}\\\sqrt{a}=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\)
<=> a = \(\sqrt{\sqrt{2}-1}\)(thoả mãn DKXD)
Vậy để P =2 thì a = \(\sqrt{\sqrt{2}-1}\)
Sửa đề: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)
a) Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
\(=\left(\dfrac{a}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)
\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{-4\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\dfrac{\left(\sqrt{a}-1\right)\cdot\left(\sqrt{a}+1\right)\cdot\left(-1\right)}{\sqrt{a}}\)
\(=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)
\(=\dfrac{1-a}{\sqrt{a}}\)
b) Để P<0 thì \(\dfrac{1-a}{\sqrt{a}}< 0\)
mà \(\sqrt{a}>0\forall a\) thỏa mãn ĐKXĐ
nên 1-a<0
hay a>1
Kết hợp ĐKXĐ, ta được: a>1
Vậy: Để P<0 thì a>1
c) Để P=2 thì \(\dfrac{1-a}{\sqrt{a}}=2\)
\(\Leftrightarrow1-a=2\sqrt{a}\)
\(\Leftrightarrow2\sqrt{a}+a-1=0\)
\(\Leftrightarrow a+2\sqrt{a}+1-2=0\)
\(\Leftrightarrow\left(\sqrt{a}+1\right)^2=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}+1=\sqrt{2}\\\sqrt{a}+1=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{a}=\sqrt{2}-1\\\sqrt{a}=-\sqrt{2}-1\left(loại\right)\end{matrix}\right.\)
hay \(a=3-2\sqrt{2}\)(nhận)
Vậy: Để P=2 thì \(a=3-2\sqrt{2}\)