K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2018

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+12\right)-165x^2\)

\(=\left[\left(x+2\right)\left(x+12\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]-165x^2\)

\(=\left(x^2+14x+24\right)\left(x^2+10x+24\right)-165x^2\)

\(=\left(x^2+12x+24+2x\right)\left(x^2+12x+24-2x\right)-165x^2\)

\(=\left(x^2+12x+24\right)^2-4x^2-165x^2\)

\(=\left(x^2+12x+24\right)^2-169x^2\)

\(=\left(x^2+12x+24-13x\right)\left(x^2+12x+24+13x\right)\)

\(=\left(x^2-x+24\right)\left(x^2+25x+24\right)\)

\(=\left(x^2-x+24\right)\left(x^2+x+24x+24\right)\)

\(=\left(x^2-x+24\right)\left[x\left(x+1\right)+24\left(x+1\right)\right]\)

\(=\left(x^2-x+24\right)\left(x+1\right)\left(x+24\right)\)

11 tháng 10 2020

Câu 1:

a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)

\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)

b) \(x^4+2009x^2+2008x+2009\)

\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)

c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)

\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2-5=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)

11 tháng 10 2020

Câu 1.

a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )

b) x4 + 2009x2 + 2008x + 2009 

= x4 + 2009x2 + 2009x - x + 2009 

= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )

= x( x3 - 1 ) + 2009( x2 + x + 1 )

= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )

= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]

= ( x2 + x + 1 )( x2 - x + 2009 )

c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )

Câu 2. 

3x2 + x - 6 - √2 = 0

<=> ( 3x2 - 6 ) + ( x - √2 ) = 0

<=> 3( x2 - 2 ) + ( x - √2 ) = 0

<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0

<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0

<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)

+) x - √2 = 0 => x = √2

+) 3( x + √2 ) + 1 = 0

<=> 3( x + √2 ) = -1

<=> x + √2 = -1/3

<=> x = -1/3 - √2

Vậy S = { √2 ; -1/3 - √2 }

Câu 3.

A = x( x + 1 )( x2 + x - 4 )

= ( x2 + x )( x2 + x - 4 )

Đặt t = x2 + x

A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t

Dấu "=" xảy ra khi t = 2

=> x2 + x = 2

=> x2 + x - 2 = 0

=> x2 - x + 2x - 2 = 0

=> x( x - 1 ) + 2( x - 1 ) = 0

=> ( x - 1 )( x + 2 ) = 0

=> x = 1 hoặc x = -2

=> MinA = -4 <=> x = 1 hoặc x = -2

20 tháng 9 2018

\(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\)\(\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\)\(\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\)\(\left(3x-2\right)\left(3x-6\right)\)

\(=\)\(3\left(x-2\right)\left(3x-2\right)\)

Chúc bạn học tốt ~ 

24 tháng 9 2019

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left[\left(y-x\right)-\left(z-x\right)\right]-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left(y-x\right)+y^2z^2\left(z-x\right)-z^2x^2\left(z-x\right)\)

\(=y^2\left(y-x\right)\left(x-z\right)\left(x+z\right)-z^2\left(x-z\right)\left(y-x\right)\left(y+x\right)\)

\(=\left(y-x\right)\left(x-z\right)\left(xy^2+y^2z-z^2y-z^2x\right)\)

Xet \(xy^2+y^2z-z^2y-z^2x=x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)=\left(y-z\right)\left(xy+yz+zx\right)\)

Vay \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)=\left(y-x\right)\left(x-z\right)\left(y-z\right)\left(xy+yz+zx\right)\)

24 tháng 9 2019

\(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^3-x^3y^2+y^2z^3-y^3z^2-z^3x^2+z^2x^3\)

\(=y^3\left(x^2-z^2\right)-y^2\left(x^3-z^3\right)+z^2x^2\left(x-z\right)\)

\(=y^3\left(x+z\right)\left(x-z\right)-y^2\left(x-z\right)\left(x^2+xz+z^2\right)+z^2x^2\left(x-z\right)\)

\(=\left(x-z\right)\left(xy^3+y^3z-y^2x^2-y^2xz-y^2z^2+z^2x^2\right)\)

.................

20 tháng 10 2018

   

      \(x^4-5x^3+7x^2-6\)

\(=x^4-3x^3+3x^2-2x^3+6x^2-6x-2x^2+6x-6\)

\(=x^2\left(x^2-3x+3\right)-2x\left(x^2-3x+3\right)-2\left(x^2-3x+3\right)\)

\(=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)

     \(\left(x^2-x+6\right)^2+\left(x-3\right)^2\)

\(=x^4+x^2+36-2x^3-12x+12x^2+x^2-6x+9\)

\(=x^4-2x^3+14x^2-18x+45\)

\(=x^4-2x^3+5x^2+9x^2-18x+45\)

\(=x^2\left(x^2-2x+5\right)+9\left(x^2-2x+5\right)=\left(x^2-2x+5\right)\left(x^2+9\right)\)

Bài này hay và khó đấy. Chúc bạn học tốt.

10 tháng 7 2019

\(\left(x+5\right)^2-3\left(x+5\right)\)

\(=\left(x+5\right)\left(x+5-3\right)\)

\(=\left(x+5\right)\left(x+2\right)\)

10 tháng 7 2019

\(2x\left(x-3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(2x-x+3\right)\)

\(=\left(x-3\right)\left(x+3\right)\)

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

28 tháng 9 2019

ko ai thèm trả lời đâu cu

28 tháng 9 2019

a) \(4x^2-6x=2x\left(2x-3\right)\)

b) \(9x^4y^3+3x^2y^4=3x^2y^3\left(3x^2+y\right)\)

c) \(3\left(x-y\right)-5x\left(y-x\right)=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(5x+3\right)\left(x-y\right)\)

d) \(x^3-2x^2+5x=x\left(x^2-2x+5\right)\)

e) \(5\left(x+3y\right)-15x\left(x+3y\right)=\left(5-15x\right)\left(x+3y\right)\)

\(=5\left(1-3x\right)\left(x+3y\right)\)

f) \(2x^2\left(x+1\right)-4\left(x+1\right)=\left(2x^2-4\right)\left(x+1\right)\)

\(=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\left(x+1\right)\)