K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2015

  x(x+1)(x+2)(x+3) + 1 

= x(x+3).(x+1)(x+2) + 1

= (x^2 + 3x)  ( x^2 + 3x +2) + 1 

Đặt x^2 + 3x = y ta có :

  y .(y + 2)+ 1 = y^2 + 2y + 1 = (y + 1)^2 

Thay y = x^2 + 3x ta có :

(  y + 1)^2 =   ( x^2 + 3x + 1)^2

17 tháng 7 2015

 

x.(x+1).(x+2).(x+3)+1

=x.(x+3).(x+1).(x+2)+1

=(x2+3x)(x2+3x+2)+1

Đặt y=x2+3x ta được:

y.(y+2)+1

=y2+2x+1

=(y+1)2

thay y=x2+3x ta được:

(x2+3x)2

=[x.(x+3)]2

=x2.(x+3)2

Vậy x.(x+1).(x+2).(x+3)+1=x2.(x+3)2

9 tháng 10 2020

2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3

= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3

= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]

= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )

= ( x - 1 )( x + 1 )

9 tháng 10 2020

Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)

\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\)

14 tháng 7 2019

1) \(x^3+x^2+4\)

\(=\left(x^3-x^2+2x\right)+\left(2x^2-2x+4\right)\)

\(=x\left(x^2-x+2\right)+2\left(x^2-x+2\right)\)

\(=\left(x^2-x+2\right)\left(x+2\right)\)

14 tháng 7 2019

2) \(x^3-2x-4\)

\(=\left(x^3+2x^2+2x\right)-\left(2x^2+4x+4\right)\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x^2+2x+2\right)\left(x-2\right)\)

21 tháng 9 2019

a/\(\left(x^2-x\right)^2+4\left(x^2-x\right)-12.\)

cho \(\left(x^2-x\right)=a\)

\(\Rightarrow a^2+4a-12\)

\(=a^2+6a-2a-12\)

\(=\left(a^2+6a\right)-\left(2a+12\right)\)

\(=a\left(a+6\right)-2\left(a+6\right)\)

\(=\left(a+6\right)\left(a-2\right)\)

\(=\left(x^2-x+6\right)\left(x^2-x-2\right)\)

b/ \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)

\(=\left(x^2+4x+x+4\right)\left(x^2+3x+2x+6\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Gọi \(x^2+5x+5=a\)

\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=\left(a-1\right)\left(a+1\right)-24\)

                                                                                 \(=a^2-1-24\)

                                                                                \(=a^2-25\)

                                                                                \(=\left(a-5\right)\left(a+5\right)\)

                                                                               \(\Rightarrow\left(x^2+5x+5-5\right)\left(x^2+5x+5+5\right)\)

                                                                                \(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)

5 tháng 10 2020

a) ( x - 1 )( 2x + 1 ) + 3( x - 1 )( x + 2 )( 2x + 1 )

= ( x - 1 )( 2x + 1 )[ 1 + 3( x + 2 ) ]

= ( x - 1 )( 2x + 1 )( 1 + 3x + 6 )

= ( x - 1 )( 2x + 1 )( 3x + 7 )

b) ( 6x + 3 ) - ( 2x - 5 )( 2x + 1 )

= 3( 2x + 1 ) - ( 2x - 5 )( 2x + 1 )

= ( 2x + 1 )[ 3 - ( 2x - 5 ) ]

= ( 2x + 1 )( 3 - 2x + 5 )

= ( 2x + 1 )( 8 - 2x )

= 2( 2x + 1 )( 4 - x )

c) ( x - 5 )2 + ( x + 5 )( x - 5 ) - ( 5 - x )( 2x + 1 )

= ( x - 5 )2 + ( x + 5 )( x - 5 ) + ( x - 5 )( 2x + 1 )

= ( x - 5 )[ ( x - 5 ) + ( x + 5 ) + ( 2x + 1 ) ]

= ( x - 5 )( x - 5 + x + 5 + 2x + 1 )

= ( x - 5 )( 4x + 1 )

d) ( 3x - 2 )( 4x - 3 ) - ( 2 - 3x )( x - 1 ) - 2( 3x - 2 )( x + 1 )

= ( 3x - 2 )( 4x - 3 ) + ( 3x - 2 )( x - 1 ) - 2( 3x - 2 )( x + 1 )

= ( 3x - 2 )[ ( 4x - 3 ) + ( x - 1 ) - 2( x + 1 ) ]

= ( 3x - 2 )( 4x - 3 + x - 1 - 2x - 2 )

= ( 3x - 2 )( 3x - 6 )

= 3( 3x - 2 )( x - 2 )

10 tháng 9 2021

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8\)

\(=\)\(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-8\)

\(=\)\(\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+11=t\) ta có : 

\(=\)\(\left(t-1\right)\left(t+1\right)-8\)

\(=\)\(t^2-1-8\)

\(=\)\(t^2-9\)

\(=\)\(\left(t-3\right)\left(t+3\right)\)

\(=\)\(\left(x^2+7x+11-3\right)\left(x^2+7x+11+3\right)\)

\(=\)\(\left(x^2+7x+8\right)\left(x^2+7x+14\right)\)

Chúc bạn học tốt ~