K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

a) Phương trình có nghiệm \(x=2-\sqrt{3}\) nên :

\(\left(2-\sqrt{3}\right)^3+a.\left(2-\sqrt{3}\right)^2+\left(2-\sqrt{3}\right)b-1=0\)

\(\Leftrightarrow20-11\sqrt{3}+a.\left(7-4\sqrt{3}\right)+2b-b\sqrt{3}-1=0\)

\(\Leftrightarrow7a+2b+19=\sqrt{3}.\left(11+4a+b\right)\) (*)

Với a,b là các số hữu tỉ thì từ (*) suy ra :

\(\hept{\begin{cases}7a+2b+19=0\\11+4a+b=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\end{cases}}\) ( Thỏa mãn )

b) Hóng cách làm vì mình không biết làm :((

17 tháng 12 2021

bai ha

17 tháng 12 2021

ko bt nha bn 

1 tháng 1 2020

a.

Ta co:

\(\orbr{\begin{cases}x^2-2x-3=0\left(1\right)\left(x\ge0\right)\\x^2+2x-3=0\left(2\right)\left(x< 0\right)\end{cases}}\)

(1)\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\left(l\right)\\x=3\left(n\right)\end{cases}}\)

(2)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(l\right)\\x=-3\left(n\right)\end{cases}}\)

b.

Ta lai co:

\(\orbr{\begin{cases}x^2-2x+1-4a^2=0\left(3\right)\left(x\ge0\right)\\x^2+2x+1-4a^2=0\left(4\right)\left(x< 0\right)\end{cases}}\)

Xet (3)

De phuong trinh dau co 4 nghiem thi PT(3) co nghiem

\(\Rightarrow\Delta^`>0\)

\(\Leftrightarrow4a^2>0\)

\(\Leftrightarrow a>0\)

\(\Rightarrow x_1=1+2a;x_2=1-2a\)

Tuong tu

(4)

\(a>0\)

\(\Rightarrow x_3=-1+2a;x_4=-1-2a\)

\(\Rightarrow S=\left(1+2a\right)^2+\left(1-2a\right)^2+\left(-1+2a\right)^2+\left(-1-2a\right)^2\)

\(=2\left(1+2a\right)^2+2\left(1-2a\right)^2\)

\(\Rightarrow S< +\infty\)

2 tháng 5 2019

Theo hệ thức Vi-et\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-1\\x_1x_2x_3=1\end{cases}}\)

Ta có \(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)

             \(=\frac{x_1-1}{1-x_2}+\frac{2}{1-x_1}+\frac{x_2-1}{1-x_2}+\frac{2}{1-x_2}+\frac{x_3-1}{1-x_3}+\frac{2}{1-x_3}\)

              \(=-1+\frac{2}{1-x_1}-1+\frac{2}{1-x_2}-1+\frac{2}{1-x_3}\)

              \(=2\left(\frac{1}{1-x_1}+\frac{1}{1-x_2}+\frac{1}{1-x_3}\right)-3\)

             \(=2.\frac{\left(1-x_2\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_3\right)+\left(1-x_1\right)\left(1-x_2\right)}{\left(1-x_1\right)\left(1-x_2\right)\left(1-x_3\right)}-3\)

              \(=2.\frac{1-x_2-x_3+x_2x_3+1-x_1-x_3+x_1x_3+1-x_1-x_2+x_1x_2}{\left(1-x_1-x_2+x_1x_2\right)\left(1-x_3\right)}-3\)

             \(=2.\frac{3-2\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)}{1-x_1-x_2+x_1x_2-x_3+x_1x_3+x_2x_3-x_1x_2x_3}-3\)

              \(=2.\frac{3-2.0-1}{1-\left(x_1+x_2+x_3\right)+\left(x_1x_2+x_2x_3+x_3x_1\right)-x_1x_2x_3}-3\)

              \(=2.\frac{2}{1-0-1-1}-3\)

               \(=-7\)

3 tháng 5 2019

Bài này lớp 7 mik đánh lộn vào lớp 9 ạ.mọi người thông cảm.

a Dw ơi,e thử làm cách khác:3

Vì  \(x_1;x_2;x_3\) là 3 nghiệm của phương trình  \(x^3-x-1\) nên:

\(x^3-x-1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\)

\(=x^3-\left(x_1+x_2+x_3\right)x^2+\left(x_1x_2+x_2x_3+x_1x_3\right)x-x_1x_2x_3\)

Do đó \(x_1+x_2+x_3=0;x_1x_2+x_2x_3+x_1x_3=-1;x_1x_2x_3=1\)

Lại có:\(x_1^3-x_1-1=0\)

\(\Leftrightarrow-x_1=1-x_1^3=\left(1-x_1\right)\left(1+x_1+x_1^2\right)\)

\(\Rightarrow\frac{1+x_1}{1-x_1}=\frac{\left(1+x_1\right)\left(1+x_1+x_1^2\right)}{-x_1}=\frac{x_1^3+3x_1^2+2x_1+1}{-x_1}=\frac{3x_1^2+3x_1-2}{-x_1}=-\left(3+2x_1+\frac{2}{x_1}\right)\)

Chứng minh tương tự,ta có:

\(\frac{1+x_2}{1-x_2}=-\left(3+2x_2+\frac{2}{x_2}\right)\)

\(\frac{1+x_3}{1-x_3}=-\left(3-2x_3+\frac{2}{x_3}\right)\)

Khi đó:\(T=\frac{1+x_1}{1-x_1}+\frac{1+x_2}{1-x_2}+\frac{1+x_3}{1-x_3}\)

\(=-\left(9+2\left(x_1+x_2+x_3\right)+2\cdot\frac{x_1x_2+x_2x_3+x_1x_3}{x_1x_2x_3}\right)\)

\(=-\left(9+2\cdot0+2\cdot\frac{-1}{1}\right)\)

\(=-7\)

Vậy T=-7

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

1 tháng 6 2020

Ta có: \(x^2-5x+3=0\)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=3\end{cases}}\)

a) \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2-2.3=19\)

b) \(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3\left(x_1+x_2\right)x_1x_2=5^3-3.5.3=80\)

c) \(C=\left|x_1-x_2\right|\)>0

=> \(C^2=x_1^2+x_2^2-2x_1x_2=19-2.3=13\)

=> C = căn 13

d) \(D=x_2+\frac{1}{x_1}+x_1+\frac{1}{x_2}=\left(x_1+x_2\right)+\frac{x_1+x_2}{x_1x_2}=5+\frac{5}{3}=5\frac{5}{3}\)

e) \(E=\frac{1}{x_1+3}+\frac{1}{x_2+3}=\frac{\left(x_1+x_2\right)+6}{x_1x_2+3\left(x_1+x_2\right)+9}=\frac{5+6}{3+3.5+9}=\frac{11}{27}\)

g) \(G=\frac{x_1-3}{x_1^2}+\frac{x_2-3}{x_2^2}=\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-3\left(\frac{1}{x_1^2}+\frac{1}{x_2^2}\right)\)

\(=\frac{x_1+x_2}{x_1x_2}-3\frac{x_1^2+x_2^2}{x_1^2.x_2^2}=\frac{5}{3}-3.\frac{19}{3^2}=-\frac{14}{3}\)

14 tháng 4 2020

Xin phép tách ra để bài giải trở nên đẹp hơn :))

Do X1 ; X2 là 2 nghiệm của phương trình \(5x^2-3x-1\) nên theo định lý Viete ta có:

\(X_1X_2=-\frac{1}{5};X_1+X_2=\frac{3}{5}\)   (  1  )

Khi đó ta có:

\(A=\frac{X_1}{X_2}+\frac{X_1}{X_2+1}+\frac{X_2}{X_1}+\frac{X_2}{X_1+1}-\left(\frac{1}{X_1}+\frac{1}{X_2}\right)\) ( theo mình ở đây là +,không biết có đúng ko :V )

\(=\frac{X_1^2+X_2^2}{X_1X_2}+\frac{X_1^2+X_1+X_2^2+X_2}{X_1X_2+X_1+X_2+1}-\frac{X_2+X_1}{X_1X_2}\)

\(=\frac{\left(X_1+X_2\right)^2-2X_1X_2-\left(X_1+X_2\right)}{X_1X_2}+\frac{\left(X_1+X_2\right)^2-2X_1X_2+\left(X_1+X_2\right)}{\left(X_1+X_2\right)+X_1X_2+1}\)

Bạn thay (  1  ) vào là ra nhé :)

14 tháng 4 2020

Thanksss kiuuu:>>